AdaBoost Vs Gradient Boosting: A Comparison Of Leading Boosting Algorithms

In recent years, ensemble learning or boosting has become one of the most promising approaches for analysing data in machine learning techniques. The method was initially proposed as ensemble methods based on the principle of generating multiple predictions and average voting among individual classifiers.

Researchers from the Institute for Medical Biometry, Germany, have identified the key reasons for the success of statistical boosting algorithms as:

(i) The ability of the boosting algorithms to incorporate automated variable selection and model choice in the fitting process, 

(ii) The flexibility regarding the type of predictor effects that can be included in the final model and 

(iii) The stability of these algorithms in high-dimensional data with several candidate variables rather than observations, a setting where most conventional estimation algorithms for regression settings collapse.

Here, we have compared two of the popular boosting algorithms, Gradient Boosting and AdaBoost.

AdaBoost   

AdaBoost or Adaptive Boosting is the first Boosting ensemble model. The method automatically adjusts its parameters to the data based on the actual performance in the current iteration. Meaning, both the weights for re-weighting the data and the weights for the final aggregation are re-computed iteratively. 

In practice, this boosting technique is used with simple classification trees or stumps as base-learners, which resulted in improved performance compared to the classification by one tree or other single base-learner.

Gradient Boosting

Gradient Boost is a robust machine learning algorithm made up of Gradient descent and Boosting. The word ‘gradient’ implies that you can have two or more derivatives of the same function. Gradient Boosting has three main components: additive model, loss function and a weak learner. 

The technique yields a direct interpretation of boosting methods from the perspective of numerical optimisation in a function space and generalises them by allowing optimisation of an arbitrary loss function.

The Comparison

Loss Function:

The technique of Boosting uses various loss functions. In case of Adaptive Boosting or AdaBoost, it minimises the exponential loss function that can make the algorithm sensitive to the outliers. With Gradient Boosting, any differentiable loss function can be utilised. Gradient Boosting algorithm is more robust to outliers than AdaBoost.

Flexibility

AdaBoost is the first designed boosting algorithm with a particular loss function. On the other hand, Gradient Boosting is a generic algorithm that assists in searching the approximate solutions to the additive modelling problem. This makes Gradient Boosting more flexible than AdaBoost.

Benefits

AdaBoost minimises loss function related to any classification error and is best used with weak learners. The method was mainly designed for binary classification problems and can be utilised to boost the performance of decision trees. Gradient Boosting is used to solve the differentiable loss function problem. The technique can be used for both classification and regression problems. 

Shortcomings

In the case of Gradient Boosting, the shortcomings of the existing weak learners can be identified by gradients and with AdaBoost, it can be identified by high-weight data points.

Wrapping Up

Though there are several differences between the two boosting methods, both the algorithms follow the same path and share similar historic roots. Both the algorithms work for boosting the performance of a simple base-learner by iteratively shifting the focus towards problematic observations that are challenging to predict. 

In the case of AdaBoost, the shifting is done by up-weighting observations that were misclassified before, while Gradient Boosting identifies the difficult observations by large residuals computed in the previous iterations.

More Great AIM Stories

Ambika Choudhury
A Technical Journalist who loves writing about Machine Learning and Artificial Intelligence. A lover of music, writing and learning something out of the box.

More Stories

OUR UPCOMING EVENTS

8th April | In-person Conference | Hotel Radisson Blue, Bangalore

Organized by Analytics India Magazine

View Event >>

30th Apr | Virtual conference

Organized by Analytics India Magazine

View Event >>

MORE FROM AIM
Vijaysinh Lendave
Complete Guide To LightGBM Boosting Algorithm in Python

Gradient Boosting Decision Tree (GBDT) is a popular machine learning algorithm. It has quite effective implementations such as XGBoost as many optimization techniques are adopted from this algorithm. However, the efficiency and scalability are still unsatisfactory when there are more features in the data.

Victor Dey
Microsoft FLAML VS Traditional ML Algorithms: A Practical Comparison

FLAML is an open-source automated python machine learning library that leverages the structure of the search space in search tree algorithmic problems and is designed to perform efficiently and robustly without relying on meta-learning, unlike traditional Machine Learning algorithms. To choose a search order optimized for both cost and error and it iteratively decides the learner, hyperparameter, sample size and resampling strategy while leveraging their compound impact on both cost and error of the model as the search proceeds.

XBNet
Vijaysinh Lendave
Guide To XBNet: An Extremely Boosted Neural Network

A few days back, a naval architecture was launched, ‘XBNet’, which stands for ‘Extremely Boosted Neural Network’, which combines gradient boosted tree with a feed-forward neural network, making the model robust for all performance metrics.

3 Ways to Join our Community

Discord Server

Stay Connected with a larger ecosystem of data science and ML Professionals

Telegram Channel

Discover special offers, top stories, upcoming events, and more.

Subscribe to our newsletter

Get the latest updates from AIM