MITB Banner

Can AI Send Cryptic Messages: Deep Learning For Steganography

Share

“An advantage to concealing speech and not text is preservation of non-lexical content such as speaker identity.”

Steganography is derived from the word “steganos” meaning concealed or covered. It is the science of concealing messages inside other messages, which are referred to as ‘carrier.’ Steganography techniques date back to the 15th century when messages were physically hidden. In modern steganography, the goal is to covertly communicate a digital message. Typically, digital signal processing techniques, such as least significant bit encoding, were used for hiding messages. 

The carrier may be publicly visible. For added security, the hidden message can also be encrypted, thereby increasing the perceived randomness and decreasing the likelihood of content discovery even if the existence of the message is detected.

The most common approach of hiding is to encode the secret message in the least significant bits of individual signal samples. Another way is to conceal the secret message in the phase of the frequency components of the carrier or in the form of the parameters of a minuscule echo that is introduced into the carrier signal. 

Neural networks are getting popular with such applications recently. They hide an entire image within another image while adding an adversarial loss term to the objective suggested using generative adversarial learning to generate steganographic images. However, these approaches do not explore speech data. So, in a paper titled, “Hide and Speak”, the researchers at Facebook and Carnegie Mellon University explored the use of deep neural networks as steganographic functions for speech data. 

DNNs For Speech Steganography

(Source: Paper On Deep Steganography by Shumeet Baluja, Google)

Steganography techniques could be used in many fields like copyright protection, watermarks and secret transmission. The common procedure is to use a steganography algorithm to hide the secret message in the cover, with unaltered external detectors. Then the main challenge is to minimise the interference in the cover image when the secret is embedded while allowing the recovery of the secret message. Once that’s done, the steganographic image is being transmitted in public channels. On the other hand, the receiver receives the image and uses the decoding algorithm and the shared key to extract the secret message.

But do the techniques for image steganography fare well with that of speech? The researchers at FAIR say NO. In their work, they explored the use of deep neural networks as steganographic functions for speech data. Concealing speech instead of text enables preservation of non-lexical content such as speaker identity. To evaluate this, the researchers conducted both human and automatic evaluations, adhering to the Speaker Verification Protocol. For the human evaluation, 400 human answers were recorded and in 82% of cases, stated the researchers, and listeners were able to distinguish whether the speaker in the forth sample matched the speaker in the first three.

The architecture is composed of (i) Encoder Network (ii) Carrier Decoder Network and (iii) Message Decoder Network. Each component in the model is implemented as a gated convolutional neural network. The researchers evaluated the approach on TIMIT and YOHO datasets using the standard train/val/test splits to assess the model under various recording conditions.

Key Highlights

  • This work empirically demonstrated the effectiveness of the proposed method compared to deep learning based on several speech datasets and analysed the results quantitatively and qualitatively. 
  • The authors showed that the proposed approach could be applied to conceal multiple messages in a single carrier using multiple decoders or a single conditional decoder.

Steganography, like cryptography, is a technique that provides a secret communication method. While the cryptography method focuses on the authenticity and integrity of the messages, steganography hides the existence of the secret. The authors wrote that in mega surveillance projects, even if the content is unknown, the existence of normal data communications may lead to privacy leakage. So, steganography is necessary for private communication, and deep learning algorithms have the potential to make them work easier.

Download the original paper here.

Share
Picture of Ram Sagar

Ram Sagar

I have a master's degree in Robotics and I write about machine learning advancements.
Related Posts

CORPORATE TRAINING PROGRAMS ON GENERATIVE AI

Generative AI Skilling for Enterprises

Our customized corporate training program on Generative AI provides a unique opportunity to empower, retain, and advance your talent.

Upcoming Large format Conference

May 30 and 31, 2024 | 📍 Bangalore, India

Download the easiest way to
stay informed

Subscribe to The Belamy: Our Weekly Newsletter

Biggest AI stories, delivered to your inbox every week.

AI Courses & Careers

Become a Certified Generative AI Engineer

AI Forum for India

Our Discord Community for AI Ecosystem, In collaboration with NVIDIA. 

Flagship Events

Rising 2024 | DE&I in Tech Summit

April 4 and 5, 2024 | 📍 Hilton Convention Center, Manyata Tech Park, Bangalore

MachineCon GCC Summit 2024

June 28 2024 | 📍Bangalore, India

MachineCon USA 2024

26 July 2024 | 583 Park Avenue, New York

Cypher India 2024

September 25-27, 2024 | 📍Bangalore, India

Cypher USA 2024

Nov 21-22 2024 | 📍Santa Clara Convention Center, California, USA

Data Engineering Summit 2024

May 30 and 31, 2024 | 📍 Bangalore, India

Subscribe to Our Newsletter

The Belamy, our weekly Newsletter is a rage. Just enter your email below.