Active Hackathon

Benchmark Analysis of Popular Image Classification Models

6 Popular Image classification models on Keras were benchmarked for inference under adversarial attacks

Image classification models have been the torchbearers of the machine learning revolution over the past couple of decades. From medical diagnosis to self-driving cars to smartphone photography, the field of computer vision has its hold on a wide variety of applications.

The advent of customized hardware for machine learning applications has propelled more research into image recognition techniques. Conventional deep learning models were tweaked and better architectures were developed. Today there are tens of good image classification models that have demonstrated state of the art results and we wanted to know how these models perform under adversarial attacks.


Sign up for your weekly dose of what's up in emerging technology.

In this work, we use pre-trained Keras models trained on the ImageNet dataset to benchmark them for adversarial attacks. We test the accuracy of these models with and without noise using random images that are not part of the ImageNet dataset. An adversarial attack on an image can be something as simple as a blur.

Keras has become popular with developers ever since the introduction because of its lightweight, written in Python and offers high-level APIs to run models with great ease. For this very reason; i.e. the ease of execution, we have used pre-trained models offered by Keras.

Find the Colab Notebook here.

Experimental Setup

The models benchmarked are:

  • NASNet large
  • Inception ResNet v2
  • Inception v3
  • DenseNet 201
  • ResNet v2 152
  • Xception


Google Colab/12GB RAM/GPU


We have used pre-trained models and weights from Keras applications.


Keras Applications [9] are deep learning models that are made available alongside pre-trained weights. These models can be used for prediction, feature extraction, and fine-tuning. Weights are loaded automatically while instantiating a model.

Read the full report below:

More Great AIM Stories

Ram Sagar
I have a master's degree in Robotics and I write about machine learning advancements.

Our Upcoming Events

Conference, Virtual
Genpact Analytics Career Day
3rd Sep

Conference, in-person (Bangalore)
Cypher 2022
21-23rd Sep

Conference, in-person (Bangalore)
Machine Learning Developers Summit (MLDS) 2023
19-20th Jan

Conference, in-person (Bangalore)
Data Engineering Summit (DES) 2023
21st Apr, 2023

3 Ways to Join our Community

Discord Server

Stay Connected with a larger ecosystem of data science and ML Professionals

Telegram Channel

Discover special offers, top stories, upcoming events, and more.

Subscribe to our newsletter

Get the latest updates from AIM
How Data Science Can Help Overcome The Global Chip Shortage

China-Taiwan standoff might increase Global chip shortage

After Nancy Pelosi’s visit to Taiwan, Chinese aircraft are violating Taiwan’s airspace. The escalation made TSMC’s chairman go public and threaten the world with consequences. Can this move by China fuel a global chip shortage?

Another bill bites the dust

The Bill had faced heavy criticism from different stakeholders -citizens, tech firms, political parties since its inception

So long, Spotify

‘TikTok Music’ is set to take over the online streaming space, but there exists an app that has silently established itself in the Indian market.