Better Predictive Marketing Comes From Better Data

Predictive analytics, as a science, is nothing new. According to Contemporary Analysis, it has been around since 1689, born out of a need to predict risk in insuring overseas shipments. More recently, predictive analytics has moved into the world of marketing, where it is quickly taking the industry by storm. Today, according to a Forbes Insights report, 86 percent of executives say they have seen a positive return on investment from predictive marketing analytics. Further, The Wall Street Journal reported that spending on marketing analytics is expected to increase from 7 percent of marketing budgets to more than 12 percent by 2017, while VentureBeat says that total marketing technology spend is expected to hit $32 billion by 2018.

The jump in spending on marketing analytics shows that busy CMOs would rather be given a solid recommendation than handed a set of data and forced to spend hours, days, or even weeks digging for their own conclusions. And therein lies the challenge for developers of predictive marketing applications: as decision-makers rely more on your predictions, you’d better be sure the underlying data is accurate. Reinforcing the point, the previously mentioned Forbes Insights report noted that only 13 percent of companies using predictive capabilities consider themselves to be highly advanced with the technology. Most, then, are not sophisticated and are relying on their predictive applications to get it right. How do they get it right?

Developers of predictive marketing apps use data science to identify the best leads, so reps and marketers can focus on the accounts mostly likely to buy and precisely target campaigns and messages to quickly and efficiently boost sales. The better the underlying data, the more precise the prediction, which leads to faster engagements, streamlined deal cycles, and more wins. To improve the precision of their predictions, app developers augment their customers’ data with supplemental data that introduces more signals and makes it possible to paint a more detailed picture of the prospect. And it’s incumbent upon them to choose the best data they can find—most accurate, rich, and relevant. Simply put, better data ensures more valid, higher-probability predictions.

AIM Daily XO

Join our editors every weekday evening as they steer you through the most significant news of the day, introduce you to fresh perspectives, and provide unexpected moments of joy
Your newsletter subscriptions are subject to AIM Privacy Policy and Terms and Conditions.

Developers using the right market intelligence and data have found that it improves the quality of their predictions, which increases the value of their apps. As well it provides insights from news sources to create an even deeper picture of companies, contacts, and situations, enabling developers to build advanced predictions using data that isn’t available from other sources. But better data doesn’t come easy. Market Intelligence firms combs through over 40,000 editorial, news, financial, and social sources of information. Data points are then triangulated across multiple sources to determine which data is most reliable. For data that’s suspect, editorial staff of such marketing intelligence firms manually validates it to further ensure accuracy.

For customers, better predictions—from better data—magnifies and expands marketing potential, helping them target their efforts more precisely. Benefits include:


Download our Mobile App



  • Increases marketing campaign effectiveness
  • Increases lead-to-opportunity conversion rates
  • Increases pipeline velocity
  • Increases closed-won rates
  • Increases accuracy of revenue forecasts

How are you building better data into your applications?

Sign up for The Deep Learning Podcast

by Vijayalakshmi Anandan

The Deep Learning Curve is a technology-based podcast hosted by Vijayalakshmi Anandan - Video Presenter and Podcaster at Analytics India Magazine. This podcast is the narrator's journey of curiosity and discovery in the world of technology.

Janice Bowen
Sr. Product Marketing Manager​ at InsideView Technologies

Our Upcoming Events

24th Mar, 2023 | Webinar
Women-in-Tech: Are you ready for the Techade

27-28th Apr, 2023 I Bangalore
Data Engineering Summit (DES) 2023

23 Jun, 2023 | Bangalore
MachineCon India 2023 [AI100 Awards]

21 Jul, 2023 | New York
MachineCon USA 2023 [AI100 Awards]

3 Ways to Join our Community

Telegram group

Discover special offers, top stories, upcoming events, and more.

Discord Server

Stay Connected with a larger ecosystem of data science and ML Professionals

Subscribe to our Daily newsletter

Get our daily awesome stories & videos in your inbox
MOST POPULAR

Council Post: Evolution of Data Science: Skillset, Toolset, and Mindset

In my opinion, there will be considerable disorder and disarray in the near future concerning the emerging fields of data and analytics. The proliferation of platforms such as ChatGPT or Bard has generated a lot of buzz. While some users are enthusiastic about the potential benefits of generative AI and its extensive use in business and daily life, others have raised concerns regarding the accuracy, ethics, and related issues.