Comparing Python Data Visualization Tools: Matplotlib vs Seaborn

Data Visualization tools are of great importance in the analytics industry as they give a clear idea of the complex data involved. Python is one of the most popular languages for visualization with its variety of tools. 

Two of Python’s greatest visualization tools are Matplotlib and Seaborn. Seaborn library is basically based on Matplotlib. Here is a detailed comparison between the two: 


Matplotlib: Matplotlib is mainly deployed for basic plotting. Visualization using Matplotlib generally consists of bars, pies, lines, scatter plots and so on.


Sign up for your weekly dose of what's up in emerging technology.

Seaborn: Seaborn, on the other hand, provides a variety of visualization patterns. It uses fewer syntax and has easily interesting default themes. It specializes in statistics visualization and is used if one has to summarize data in visualizations and also show the distribution in the data. 

2.Handling Multiple Figures:

Matplotlib: Matplotlib has multiple figures can be opened, but need to be closed explicitly. plt.close() only closes the current figure. plt.close(‘all’) would close em all.

Download our Mobile App

Seaborn: Seaborn automates the creation of multiple figures. This sometimes leads to OOM (out of memory) issues.


Matplotlib: Matplotlib is a graphics package for data visualization in Python. It is well integrated with NumPy and Pandas. The pyplot module mirrors the MATLAB plotting commands closely. Hence, MATLAB users can easily transit to plotting with Python.

Seaborn: Seaborn is more integrated for working with Pandas data frames. It extends the Matplotlib library for creating beautiful graphics with Python using a more straightforward set of methods.

4.Data frames and Arrays

Matplotlib: Matplotlib works with data frames and arrays. It has different stateful APIs for plotting. The figures and aces are represented by the object and therefore plot() like calls without parameters suffices, without having to manage parameters.

Seaborn: Seaborn works with the dataset as a whole and is much more intuitive than Matplotlib. For Seaborn, replot() is the entry API with ‘kind’ parameter to specify the type of plot which could be line, bar, or many of the other types. Seaborn is not stateful. Hence, plot() would require passing the object.


Matplotlib: Matplotlib is highly customizable and powerful.

Seaborn: Seaborn avoids a ton of boilerplate by providing default themes which are commonly used.

6.Use Cases:

Matplotlib: Pandas uses Matplotlib. It is a neat wrapper around Matplotlib.

Seaborn: Seaborn is for more specific use cases. Also, it is Matplotlib under the hood. It is specially meant for statistical plotting.

Which One Should You Use

Both the popular visualization tools used in Python have differences in use cases, scalability and many other things. Based on these one should select the best visualization tool for a particular work. If one is doing statistics then Seaborn is a good choice because it has a lot of things suitable for statistical tasks, built-in.

Support independent technology journalism

Get exclusive, premium content, ads-free experience & more

Rs. 299/month

Subscribe now for a 7-day free trial

More Great AIM Stories

Disha Misal
Found a way to Data Science and AI though her fascination for Technology. Likes to read, watch football and has an enourmous amount affection for Astrophysics.

AIM Upcoming Events

Early Bird Passes expire on 3rd Feb

Conference, in-person (Bangalore)
Rising 2023 | Women in Tech Conference
16-17th Mar, 2023

Conference, in-person (Bangalore)
Data Engineering Summit (DES) 2023
27-28th Apr, 2023

3 Ways to Join our Community

Telegram group

Discover special offers, top stories, upcoming events, and more.

Discord Server

Stay Connected with a larger ecosystem of data science and ML Professionals

Subscribe to our Daily newsletter

Get our daily awesome stories & videos in your inbox

All you need to know about Graph Embeddings

Embeddings can be the subgroups of a group, similarly, in graph theory embedding of a graph can be considered as a representation of a graph on a surface, where points of that surface are made up of vertices and arcs are made up of edges