Now Reading
Complete Guide to PandasGUI For DataFrame Operations

Complete Guide to PandasGUI For DataFrame Operations

Jayita Bhattacharyya

Exploratory data analysis is the first thing we would do after acquiring the dataset. EDA allows us to better understand the data. Do some operations and make data ready to be fitted into the model. Pandas is our go-to library for exploratory data analysis of tabular data or structured data in Python. Pandas is the most preferred library due to its ease of access, readily available functions and enhanced operations. Analysis and visualization of data go hand-in-hand. 

PandasGUI is a graphical user interface to visualize and analyse pandas DataFrame. There are numerous operations that PandasGUI can perform such as statistical operations, applying filters, plotting graphs(scatter, box, histogram, etc), reshape the dataframe and many more. One of its key features is Drag and drop which is handy to directly import data from any dataframe. Can handle multiple dataframes at a time.

In this article, I’ll discuss the features of PandasGUI and demonstrate the operations that it can perform on Pandas DataFrames.

Installation



pip install pandasgui

Basic Operation

Using pandas dataframe is loaded or initialized 

import pandas as pd
from pandasgui import show
df = pd.DataFrame(([[1, 2, 3], [4, 5, 6], [7, 8, 9]]), columns=['a', 'b', 'c'])
show(df)

The show() function upon the dataframe will activate the GUI window and it’ll be shown as below.

The statistics tab will show the statistical analysis of the dataframe – type of each data, count, the number of the unique data present(n unique), mean, standard deviation, min and max.


Stay Connected

Get the latest updates and relevant offers by sharing your email.

The Grapher tab has various options for graphs – histogram, scatter plot, line plot, bar chart, boxplot, heatmaps, pie charts, etc. These plots are produced using Plotly.

Line graph

Users can also provide their customization using the Custom Kwargs option. 

Scatter plot

Various operations over the plot are also available as shown in the right corner of the image. This plot could be downloaded in a png format, zoom in and out, autoscaling, resetting axes, etc.

Box Plot

Editing Data

One of the interesting features of pandasgui is editing data. Data can be replaced with other values or deleted and also copied and pasted to any notepad, word or excel file. 

Working with a dataset

Pandasgui library has a dataset module containing datasets – iris, titanic, pokemon, car crashes, mpg, stockdata, tips, mi_manufacturing, gapminder. These datasets will at first be downloaded in CSV format from the API. Custom datasets can also be uploaded similarly as the above example using pandas dataframe to then 

For demonstration, I’ve shown the iris dataset:

See Also
Capsule Net

from pandasgui import show
from pandasgui.datasets import iris
show(iris)

For Grapher to set names and values of specific variables you should drag and drop them from the variable list to the right column. Here variation of species with sepal width is seen in the pie chart.

Filtering Data

The filters tab is used to provide query expressions and according to that data will be filtered.

Reshaper

Data can be reshaped using pivot and melt features.

Pivot

Melt

Conclusion

PandasGUI can be used as an alternative to pandas. Its features can be quite accessible for any beginner and professional data scientists. Its quick and handy features make it user-friendly. It’s under active development. It can be easily used by non-technical or non-coders. PandasGUI is a super cool toolkit for any data analysis and visualization work.

Have fun experimenting with it.  

What Do You Think?

If you loved this story, do join our Telegram Community.


Also, you can write for us and be one of the 500+ experts who have contributed stories at AIM. Share your nominations here.
What's Your Reaction?
Excited
25
Happy
5
In Love
1
Not Sure
0
Silly
0

Copyright Analytics India Magazine Pvt Ltd

Scroll To Top