Converting An Image To A Cartoon Using OpenCV

Computer vision is one of the hottest fields in Artificial Intelligence with a wide variety of applications. OpenCV is the most popular library used in computer vision with a lot of interesting stuff. If you want to start your journey in computer vision you can start from learning OpenCV. It is easy to understand and implement by everyone. In this article using OpenCV, let’s have fun with converting normal images into cartoons.

We will cover the following steps in this article to convert the image to cartoon:-

THE BELAMY

Sign up for your weekly dose of what's up in emerging technology.
  1. Importing libraries
  2. Reading the input image
  3. Detecting edges in the image
  4. Converting into grayscale & applying the medium blur
  5. Cartoonifying the image

Converting Image to Cartoon Using OpenCV

Now, let us proceed step-by-step.

Step-1: Reading the libraries

Here we are importing the required libraries. If you are working in Google Colab then we need to import google.colab.patches.

#Importing required libraries
import cv2
import numpy as np
from google.colab.patches import cv2_imshow

Step-2: Reading the image

In this step, we will read the image. We have download an image if Virat Kohli from Google Image and will try to perform our experiment on this image.

#Reading image 
img = cv2.imread("/content/virat.jpeg")
from skimage import io 
io.imshow(img)

As we can see that the input image read by OpenCV is being shown as a BGR (Blue-Green-Red) image so we need to convert it to the RGB (Red-Green-Blue).

#Converting to RGB
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
io.imshow(img)

Step-3: Detecting edges

Here we are going to detect the edges in the image using adaptive thresholding methods.

#Detecting edges of the input image
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray = cv2.medianBlur(gray, 5)
edges = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 9)
io.imshow(edges)
images to cartoon

Step-4: Cartoonifying image

In this step, we will be cartoonifying the image using bilateral filter method.

#Cartoonifying the image
color = cv2.bilateralFilter(img, 9, 250, 250)
cartoon = cv2.bitwise_and(color, color, mask=edges)

Step-5: Final Output (Cartoon Image)

Finally, we will visualize the final output

io.imshow(cartoon)

images to cartoon

The transformation from input to output

images to cartoon
images to cartoon

Conclusion

In the above demonstration, we converted a normal image into a cartoon by implementing a few lines of code using computer vision techniques. we shall have great fun using computer vision techniques.

The complete code of this implementation is available on AIM’s GitHub repository. Please go through this link to find the notebook.

More Great AIM Stories

Prudhvi varma
AI enthusiast, Currently working with Analytics India Magazine. I have experience of working with Machine learning, Deep learning real-time problems, Neural networks, structuring and machine learning projects. I am a Computer Vision researcher and I am Interested in solving real-time computer vision problems.

Our Upcoming Events

Masterclass, Virtual
How to achieve real-time AI inference on your CPU
7th Jul

Masterclass, Virtual
How to power applications for the data-driven economy
20th Jul

Conference, in-person (Bangalore)
Cypher 2022
21-23rd Sep

Conference, Virtual
Deep Learning DevCon 2022
29th Oct

3 Ways to Join our Community

Discord Server

Stay Connected with a larger ecosystem of data science and ML Professionals

Telegram Channel

Discover special offers, top stories, upcoming events, and more.

Subscribe to our newsletter

Get the latest updates from AIM
MOST POPULAR

What can SEBI learn from casinos?

It is said that casino AI technology comes with superior risk management systems compared to traditional data analytics that regulators are currently using.

Will Tesla Make (it) in India?

Tesla has struggled with optimising their production because Musk has been intent on manufacturing all the car’s parts independent of other suppliers since 2017.

Now Reliance wants to conquer the AI space

Many believe that Reliance is aggressively scouting for AI and NLP companies in the digital space in a bid to create an Indian equivalent of FAANG – Facebook, Apple, Amazon, Netflix, and Google.

[class^="wpforms-"]
[class^="wpforms-"]