How AI is Transforming The Race Strategy Of Electric Vehicles

According to Behrani, AI plays an important role in transforming race day strategy.

Formula E has grown in popularity as a sustainable sport that pioneers advancements in electric car technology. Its premise is not only that the cars are all electric but also that the 11 teams, each with two drivers, compete in identically configured, battery-powered electric race cars.

“How can we use the data to aid Formula E’s racing strategy?” – Vikas Behrani

Vikas Behrani, Vice President – Data Science at Genpact, spoke at the Deep Learning Devcon 2021, organized by The Association of Data Scientists. In his session, he discussed “Lap Estimate Optimizer: Transforming race-day strategy with AI” and gave insights into how a Formula E race is not only about driver ability and technique but also about data-driven strategy.

(Source: Vikas Behrani | DLDC 2021)

Characteristics of Formula E?

Behrani went into greater detail about the Formula E race’s characteristics. It is a racing series dedicated entirely to electric cars. Within each season, extensive performance data on racing dynamics, the driver, and the car itself from the previous seven seasons provide a great foundation for forecasting/simulation employing cutting-edge optimization and data science methods. 

A wealth of available data ranging from past driver performances, lap times, standings in previous races, weather, and technical information about the car such as the battery, tyres, and engine, data scientists can forecast the number of laps a car can complete by quantifying behavioural characteristics such as the driver’s risk-taking appetite and other traits such as track information and weather that can affect a car’s performance. Additionally, Behrani discussed how this relates to the other industry – how similar models for racing strategy can be applied to banking, insurance, and other manufacturing sectors. 

(Source: Vikas Behrani | DLDC 2021)

Forecasting using deep learning

Vikas stated during his discussion of the model that the objective of this exercise is to define the process for forecasting the number of laps a car would complete in 45 minutes during a future race using historical data. He then described the model for the Lap Estimate Optimizer. To forecast the number of laps completed at the end of each race, an ensemble model is developed using a combination of an intuitive mathematical model and an instinctual deep learning model

There are numerous features such as lap number, previous lap time, fastest qualifying time, track length, and projected time. These characteristics will be fed into a neural network model used to forecast the lap time. We constructed and compared a total of 32 models.

LEO process

Behrani went into detail regarding the steps involved in LEO.

Step-1: Collecting historical data on the quickest lap time. 

Step-2: Collecting historical data on the fastest lap time of rank-1 drivers.

Step-3: Normalize the quickest lap time obtained in step 1 by subtracting it from the matching numbers in step 2.

Step-4: Using the distribution matrix from step 3, simulate data that follows the same distribution.

Step-5: In step 4, add the quickest lap time from qualifying and practise sessions.

Step-6: Add the values in the above matrix row by row until we reach 45 minutes.

Behrani later discussed the predictions for Santiago, Mexico, and Monaco and how the effort on the track translates into market impact. Finally, he went on to illustrate several use cases. 

This exercise aims to determine how to use previous data to forecast how many laps an automobile would finish in 45 minutes. An intuitive mathematical model and an instinctual deep learning model are combined to anticipate the number of laps at the end of each race.

More Great AIM Stories

Dr. Nivash Jeevanandam
Nivash holds a doctorate in information technology and has been a research associate at a university and a development engineer in the IT industry. Data science and machine learning excite him.
MORE FROM AIM
Yugesh Verma
How to Visualize Backpropagation in Neural Networks?

The backpropagation algorithm computes the gradient of the loss function with respect to the weights. these algorithms are complex and visualizing backpropagation algorithms can help us in understanding its procedure in neural network.

Yugesh Verma
How is Boolean algebra used in Machine learning?

Machine learning model with Boolean algebra starts with the data with a target variable and input or learner variables and using the set of rules it generates output value by considering a given configuration of input samples.

3 Ways to Join our Community

Discord Server

Stay Connected with a larger ecosystem of data science and ML Professionals

Telegram Channel

Discover special offers, top stories, upcoming events, and more.

Subscribe to our newsletter

Get the latest updates from AIM