MITB Banner

Google Launches Muse, A New Text-to-Image Transformer Model

Muse claims to be faster as it uses a compressed, discrete latent space and parallel decoding.
Listen to this story

Since the beginning of 2021, advances in AI research have been revolutionised with the birth of a plethora of deep learning-backed text-to-image models like DALL-E-2, Stable Diffusion, and Midjourney, to name a few. Adding to the list is Google’s Muse, a text-to-image Transformer model that claims to achieve state-of-the-art image generation performance. 

Given the text embedding obtained from a large language model (LLM) that has already been trained, Muse is trained on a masked modelling task in discrete token space. Muse has been trained to predict randomly masked image tokens. Muse asserts to be more effective than pixel-space diffusion models like Imagen and DALL-E 2 since it uses discrete tokens and requires fewer sample iterations. The model generates a zero-shot, mask-free editing for free by iteratively resampling image tokens conditioned on a text prompt.

Check out more about Muse here

Unlike Parti and other autoregressive models, Muse uses parallel decoding. A pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and comprehending visual concepts such as objects, their spatial relationships, pose, cardinality, etc. Additionally, Muse supports inpainting, outpainting, and mask-free editing without the need to modify or invert the model.

With an FID score of 6.06, the 900M parameter model achieves a new SOTA on CC3M. On zero-shot COCO evaluation, the Muse 3B parameter model obtains an FID of 7.88 and a CLIP score of 0.32. 

Model Architecture:

For both the base and super-res Transformer layers, the text encoder creates a text embedding that is used for cross-attention with image tokens. The base model then uses a VQ Tokenizer that generates a 16*16 latent space of tokens after being pre-trained on lower resolution (256*256) images. The cross-entropy loss then learns to predict the masked tokens that have been masked at a variable rate for each sample. After training the base model, the reconstructed lower-resolution tokens and text tokens are then fed into the super-res model. Now the model can predict masked tokens at a higher resolution.

Access all our open Survey & Awards Nomination forms in one place >>

Picture of Shritama Saha

Shritama Saha

Shritama (she/her) is a technology journalist at AIM who is passionate to explore the influence of AI on different domains including fashion, healthcare and banks.

Download our Mobile App

CORPORATE TRAINING PROGRAMS ON GENERATIVE AI

Generative AI Skilling for Enterprises

Our customized corporate training program on Generative AI provides a unique opportunity to empower, retain, and advance your talent.

3 Ways to Join our Community

Telegram group

Discover special offers, top stories, upcoming events, and more.

Discord Server

Stay Connected with a larger ecosystem of data science and ML Professionals

Subscribe to our Daily newsletter

Get our daily awesome stories & videos in your inbox
Recent Stories