Google’s AI Creates Better Machine-Learning Code Than Its Makers

Google’s AutoML system, which was introduced back in May, has recently produced machine-learning codes with higher efficiency than those made by the researchers themselves. Google developed AutoML to be an artificial intelligence that could help humans create other self-learning systems.

AutoML was developed as a solution to the lack of top-notch talent in AI programming. To meet the demand for experts, Google developed AutoML to create self-learning code, and in a way, clone itself.

Google reported in its official blog that AutoML can be trained and evaluated for quality on particular tasks. Feedback is generated to improve the proposals for the subsequent rounds. AutoML can run thousands of simulations to make appropriate changes, generate new architectures, and give recurring feedback.

Subscribe to our Newsletter

Join our editors every weekday evening as they steer you through the most significant news of the day, introduce you to fresh perspectives, and provide unexpected moments of joy
Your newsletter subscriptions are subject to AIM Privacy Policy and Terms and Conditions.

Moreover, AutoML recently scored an 82% efficiency while sorting images based on their content. It was also given the task of locating multiple objects within an image. The code that AutoML wrote managed to score 43% while the best human-built program scored 39%.

“AutoML is just our machines automatically generating machine learning models. Today, these are handcrafted by machine learning scientists and literally only a few thousands of scientists around the world can do this, design the number of layers, weight and connect the neurons appropriately. It’s very hard to do. We want to democratize this. We want to bring this to more people,” said Google CEO Sundar Pichai at the October 4 event.

It is noteworthy that instead of designing a neural network from the ground up, it is efficient to work on an existing AI system and modify it according to the task it has to perform. Humans will merely have to play a gatekeeping role as more of these intelligent systems start to take over our work and outperform us.

Priya Singh
Priya Singh leads the editorial team at AIM and comes with over six years of working experience as a journalist across broadcast and digital platforms. She loves technology and an avid follower of business and startup news. She is also a self-proclaimed baker and a crazy animal lover.

Download our Mobile App


AI Hackathons, Coding & Learning

Host Hackathons & Recruit Great Data Talent!

AIM Research

Pioneering advanced AI market research

Request Customised Insights & Surveys for the AI Industry


Strengthen Critical AI Skills with Trusted Corporate AI Training

Our customized corporate training program on Generative AI provides a unique opportunity to empower, retain, and advance your talent.

AIM Leaders Council

World’s Biggest Community Exclusively For Senior Executives In Data Science And Analytics.

3 Ways to Join our Community

Telegram group

Discover special offers, top stories, upcoming events, and more.

Discord Server

Stay Connected with a larger ecosystem of data science and ML Professionals

Subscribe to our Daily newsletter

Get our daily awesome stories & videos in your inbox