How Amex Helps Small Businesses with Real-Time Credit Decisioning

Radhakrishnan G, Global Commercial and Merchant Risk Decision Science at Amex explains AI and ML-based real-time credit decisioning.
Amex

On the first day of the Association of Data Scientist’s (ADaSci) Deep Learning DevCon 2021 (DLDC), Radhakrishnan G, Head- Global Commercial and Merchant Risk Decision Science at American Express (Amex), spoke about how his company helps small businesses with real-time credit decisioning using machine learning and artificial intelligence.

Radhakrishnan is an alumnus of Management Development Institute, Gurugram. He kick-started his career as an Assistant Manager at Reliance Industries Limited before joining Amex in 2002. Throughout his almost two-decade-long ongoing stint at American Express, Radhakrishnan has been associated with risk management. His current role as the Head of Global Commercial and Merchant Risk Data Science and Risk Models across customer life cycle for card and non-card portfolios involves leading a team of more than 80 data and decision scientists across the globe. 

Leveraging ML at Amex

Radhakrishnan began his talk by introducing the audience by providing insights into the financial services company American Express. He revealed that as of 2020, Amex has 112 million cards in force, with 63,700 employees across the globe managing a worldwide billed business of $1.01 trillion and generating an annual revenue of $36.1 billion. 

THE BELAMY

Sign up for your weekly dose of what's up in emerging technology.
  • Customer service
  • Customer management
  • Responsible lending actions and risk decisions 
  • Information management 
  • Commercial underwriting 
  • Loyalty marketing 

It does so with a privacy framework. 

Assessing Commercial Credit Risk

Further, Radhakrishnan talked about the dimensions for assessing commercial credit risk. He laid down the three facets for assessing risk: 

American Express leverages machine learning techniques and big technology for:

  • Enhancing and managing new customer marketing
  • Company profile: This includes information relating to the industry of the company, business tenure, the company’s management experience, its online presence, and public records. 
  • Capacity: Under this, the company’s financial ratios (leverage and cash flows) are considered, its business revenue and limit on external trades. 
  • Creditworthiness: Business credit scores, financial ratios (liquidity and profitability), historical performance on credit products and owner’s FICO. 

Radhakrishnan gave the example of the company ABC General Trading LLC seeking credit from American Express to substantiate this. Suppose the company functions in the e-commerce industry and has an income of $120,000 with an external limit of $30,000 and a debt of $100,000, with no past derogs and public records; and unavailability of revenue data. While the absence of past derogs and income of $120,000 works in favour of the company, low business tenure, involvement of large revolve behaviour on external trades, and the absence of enough data to predict its capacity to pay are con. Thus, the next ideal step would be to ask for more numbers and figure out the revenue and industry capacity. Once the bank statements are collected, it will provide American Express to get a better view of ABC General Trading LLC capacity to pay, leading to the approval for credit. However, the bank statement collection and reviewing was traditionally done manually and are a time-consuming process. This is where automating underwriting using ML and AI comes in. 

Credit Risk Models

American Express, or any other financial institution, needs AI automation to extract information from documents and ML technologies to leverage information from multiple sources to enable real-time decision making. 

  • For assessing the company profile, Amex uses ML to arbitrate the best industry match. It uses name-matching algorithms to uncover related entities. 
  • It uses ML for revenue estimation and optimal limit estimation. 
  • Finally, it extracts information from documents using AI. For this, it uses time series intelligence using RNN (recurrent neural network). 

Filling information gaps using ML:

Industry estimation: 

Industry intelligence is an essential part of risk management, and ML techniques can help identify this with greater accuracy and speed. 

  • Applicant’s company industry can be identified using industry estimation algorithms such as Smart SIC. Asking the customer or relying on the bureau is slow and tedious. Using ML, on the other hand, arbitrates between different sources based on the recency and accuracy of the source. On this, financial institutes can incorporate real-time feedback and enable business activities. This results in faster decision making. 

Revenue estimation: 

  • Customer’s revenue can be estimated using a revenue estimation algorithm or Smart Revenue. This model uses data from multiple sources and makes a decision based on the recency and accuracy of the sources. 

Radhakrishnan further talks about the intelligence extraction pipeline. He says that non-standard text is cleaned up using custom text processing pipelines and Word2Vec. Furthermore, an LSTM model is used to predict transaction categories. Real-time features, along with other ML-powered features, are fed into ML models, resulting in superior decision making, more credit and faster time to market. 

More Great AIM Stories

Debolina Biswas
After diving deep into the Indian startup ecosystem, Debolina is now a Technology Journalist. When not writing, she is found reading or playing with paint brushes and palette knives. She can be reached at debolina.biswas@analyticsindiamag.com

Our Upcoming Events

Conference, in-person (Bangalore)
Machine Learning Developers Summit (MLDS) 2023
19-20th Jan, 2023

Conference, in-person (Bangalore)
Rising 2023 | Women in Tech Conference
16-17th Mar, 2023

Conference, in-person (Bangalore)
Data Engineering Summit (DES) 2023
27-28th Apr, 2023

Conference, in-person (Bangalore)
MachineCon 2023
23rd Jun, 2023

Conference, in-person (Bangalore)
Cypher 2023
20-22nd Sep, 2023

3 Ways to Join our Community

Whatsapp group

Discover special offers, top stories, upcoming events, and more.

Discord Server

Stay Connected with a larger ecosystem of data science and ML Professionals

Subscribe to our newsletter

Get the latest updates from AIM