Julia Computing Receives Funding To Accelerate Electronics Simulation Using AI & ML

Julia Computing

Recently,  Julia Computing has been awarded funding by the US Defense Advanced Research Projects Agency (DARPA). The funding was awarded to accelerate the simulation of analog and mixed-signal circuit models using state of the art machine learning and artificial intelligence techniques. 

Last year, the Ditto program is launched by DARPA to explore the novel third-wave AI solutions through the lens of microelectronic system simulation. DARPA stated that the effort seeks to develop an automated software framework that can take in a microelectronic system design, train effective ML surrogate models of sub-system components, and simulate these designs 1000x faster while maintaining the acceptable levels of accuracy. 

Replying to this comment,  Keno Fischer, who is the project PI and CTO at Julia Computing said, “Julia’s performance and differentiable programming capabilities give us a unique advantage in creating novel tools for modelling and simulation.”

AIM Daily XO

Join our editors every weekday evening as they steer you through the most significant news of the day, introduce you to fresh perspectives, and provide unexpected moments of joy
Your newsletter subscriptions are subject to AIM Privacy Policy and Terms and Conditions.

He added, “Using newly developed surrogate architectures, such as our Continuous Time Echo State Network (CTESN) architecture, we have already been able to demonstrate acceleration in excess of 100x by employing these techniques in multi-physics simulations and are excited to bring this technology to the electronics simulation space.”

The company is partnering with Boston-based quantum computing startup QuEra Computing to demonstrate these novel capabilities for simulations of the control electronics of QuEra’s neutral atom quantum computers. 


Download our Mobile App



Julia is one of the high-performance languages of choice for data science, artificial intelligence, and modelling and simulation applications. According to sources, the sophisticated designs of the Boston-based quantum computing startup stretch the boundaries of traditional simulation tooling, making a significant acceleration in simulation performance all the more crucial. Julia Computing intends to make these capabilities available to the larger industry in the near future.

The programming language company mentioned that the companies who are facing challenges in analog/mixed-signal modelling and simulation problems are encouraged to contact Julia Computing.

Contact here.

Sign up for The Deep Learning Podcast

by Vijayalakshmi Anandan

The Deep Learning Curve is a technology-based podcast hosted by Vijayalakshmi Anandan - Video Presenter and Podcaster at Analytics India Magazine. This podcast is the narrator's journey of curiosity and discovery in the world of technology.

Ambika Choudhury
A Technical Journalist who loves writing about Machine Learning and Artificial Intelligence. A lover of music, writing and learning something out of the box.

Our Upcoming Events

24th Mar, 2023 | Webinar
Women-in-Tech: Are you ready for the Techade

27-28th Apr, 2023 I Bangalore
Data Engineering Summit (DES) 2023

23 Jun, 2023 | Bangalore
MachineCon India 2023 [AI100 Awards]

21 Jul, 2023 | New York
MachineCon USA 2023 [AI100 Awards]

3 Ways to Join our Community

Telegram group

Discover special offers, top stories, upcoming events, and more.

Discord Server

Stay Connected with a larger ecosystem of data science and ML Professionals

Subscribe to our Daily newsletter

Get our daily awesome stories & videos in your inbox
MOST POPULAR

Council Post: The Rise of Generative AI and Living Content

In this era of content, the use of technology, such as AI and data analytics, is becoming increasingly important as it can help content creators personalise their content, improve its quality, and reach their target audience with greater efficacy. AI writing has arrived and is here to stay. Once we overcome the initial need to cling to our conventional methods, we can begin to be more receptive to the tremendous opportunities that these technologies present.