Active Hackathon

Parameters To Keep In Mind While Using Data Analytics On The Cloud

With the enormous amount of big data that we have for running businesses efficiently in our everyday lives, the cloud comes in as a very efficient solution. But moving data analytics on the cloud has its own set of difficulties. Here are some of the parameters to keep in mind while using data analytics on the cloud. In this article, we will take a look at the migration process as well as the advantages of using cloud analytics.


Sign up for your weekly dose of what's up in emerging technology.

Figure out where to host the data modelling:

While adopting cloud technology, a common question of where to host the data modelling is an important one to consider. There model hosting should provide good performance and functionality gains and flexibility benefits. It becomes necessary to identify where to host data modelling.

Study the challenges thoroughly:

In any migration, many companies focus a ton on the project’s challenges but don’t spend a lot of time learning the shortcuts, resources, and tools to help them out. It is important to understand migration challenges thoroughly to help companies ease the transition to the cloud. Not every tool is for everyone, but by becoming much more familiar with these accelerators, you can potentially save time and money. By having someone focus on understanding this landscape and bringing them to the project team there will be a start on resources that can add value.

Learn from the employees:

There would be people already in your organisation that must have downloaded some sort of cloud-based analytics and have even begun to use them. Instead of banning them, learn from them and adopt in the entire organisation. It is necessary to need to keep informed about the solutions readily available. It is also important to learn what tools they refer to and what solutions are being provided and how they win against the traditional business intelligence tools of the organisation.

Understand the extent to which you rely on Universes:

There a unique way to handle data models for every BI environment. For a large organisation, it is likely that there are different front-end reporting tools and data sources. This has to be taken into consideration while moving data analytics in the cloud.

Build the first frame:

The task of transforming the data, building and testing the model, creating visualisations and then turning the output into action causes an analytical block. Building a basic data frame is important for cloud services. Companies should build a basic data frame on a relatively manageable and familiar dataset, process statistics against it and create analysis out of it.

Then start to layer in new data by adding analytics, eventually bringing out new visualisations. The aim is to keep it simple, flexible, and understandable. This helps build consensus internally, increase buy-in from lines of business, and get a faster time to value.

Avoid shortcut of a point solution:

It is always better to have a start-small approach. The cloud platform is yet to acquire certain capabilities to make it useful. Using shortcuts might in the realm of cloud analytics starting short and having a long way is always better than going for short cuts for a point solution, which may not help.

Adoption Of Cloud Analytics

Cloud analytics is important for organisations belonging to different sectors to adopt because of the following advantages:

Improve product availability: Study buying behaviour to improve product availability and delivery.

Study genetic diseases: Test genomic data to better understand the genetic disease and how to offer cures. It can also be used to keep track of a lot of data and identify patterns of disease reporting to improve the availability of medicine and vaccines

Improve customer service: Identify patterns in speech, images and videos in order to improve customer satisfaction and improve customer service.

Optimise IT costs: Cloud analytics can be used to analyse hybrid cloud infrastructures to improve application performance and optimise the IT costs.

More Great AIM Stories

Disha Misal
Found a way to Data Science and AI though her fascination for Technology. Likes to read, watch football and has an enourmous amount affection for Astrophysics.

Our Upcoming Events

Conference, in-person (Bangalore)
Machine Learning Developers Summit (MLDS) 2023
19-20th Jan, 2023

Conference, in-person (Bangalore)
Rising 2023 | Women in Tech Conference
16-17th Mar, 2023

Conference, in-person (Bangalore)
Data Engineering Summit (DES) 2023
27-28th Apr, 2023

Conference, in-person (Bangalore)
MachineCon 2023
23rd Jun, 2023

3 Ways to Join our Community

Discord Server

Stay Connected with a larger ecosystem of data science and ML Professionals

Telegram Channel

Discover special offers, top stories, upcoming events, and more.

Subscribe to our newsletter

Get the latest updates from AIM