Now Reading
Top Free Resources To Learn Scikit-Learn

Top Free Resources To Learn Scikit-Learn

  • Check out the best and free resources to study Scikit-Learn.
Impact Analytics

Scikit-Learn is one of the popular software machine learning libraries. The library is built on top of NumPy, SciPy, and Matplotlib and supports supervised and unsupervised learning as well as provides various tools for model fitting, data preprocessing, model selection and evaluation.

Here is a list of the best and free resources to learn Scikit-Learn.

REGISTER FOR OUR UPCOMING ML WORKSHOP

(The list is in no particular order)

Scikit-Learn Tutorials

About: From the developers of Scikit-Learn, this tutorial provides an introduction to machine learning with Scikit-Learn. It includes topics such as problem setting, loading an example dataset, learning and predicting. The tutorial is suitable for both beginners and advanced students. 

Know more here.

Perform Sentiment Analysis with Scikit-Learn

About: In this project-based course, you will learn the fundamentals of sentiment analysis, and build a logistic regression model to classify movie reviews as either positive or negative. You will learn how to develop and employ a logistic regression classifier using Scikit-Learn, perform feature extraction with The Natural Language Toolkit (NLTK), tune model hyperparameters and evaluate model accuracy etc.  

Know more here.

Python Machine Learning: Scikit-Learn Tutorial

About: Python Machine Learning: Scikit-Learn tutorial will help you learn the basics of Python machine learning. You will learn how to use Python and its libraries to explore your data with the help of Matplotlib and Principal Component Analysis (PCA). You will also learn how to work with the KMeans algorithm to construct an unsupervised model, fit this model to your data, predict values, and validate the model.

Know more here.

Scikit Learn Tutorial | Machine Learning with Python

About: Edureka’s video tutorial introduces machine learning in Python. It will take you through regression and clustering techniques along with a demo of SVM classification on the famous iris dataset. This video helps you to learn the introduction to Scikit-learn and how to install it, understand how machine learning works, among other things.

Know more here.

Regression using Scikit-Learn

About: In this Coursera offering, you will learn about Linear Regression, Regression using Random Forest Algorithm, Regression using Support Vector Machine Algorithm. Scikit-Learn provides a comprehensive array of tools for building regression models.

Know more here.

Machine Learning with Scikit-Learn Tutorial

About: In this course, you will learn about machine learning, algorithms, and how Scikit-Learn makes it all so easy. You will get to know the machine learning approach, jargons to understand a dataset, features of supervised and unsupervised learning models, algorithms such as regression, classification, clustering, and dimensionality reduction.

See Also
logistic regression

Know more here.

Predict Sales Revenue with Scikit-Learn

About: In this two-hour long project-based course, you will build and evaluate a simple linear regression model using Python. You will employ the Scikit-Learn module for calculating the linear regression while using pandas for data management and seaborn for plotting. By the end of this course, you will be able to build a simple linear regression model in Python with Scikit-Learn, employ Exploratory Data Analysis (EDA) to small data sets with seaborn and pandas.

Know more here.

SciPy 2016 Scikit-learn Tutorial

About: This tutorial is available on GitHub. It includes an introduction to machine learning with sample applications, data formats, preparation and representation, supervised learning: training and test data, the Scikit-Learn estimator interface and more. 

Know more here.

Build NLP pipelines using Scikit-Learn

About: This is a two-hour long project-based course, where you will understand the business problem and the dataset and learn how to generate a hypothesis to create new features based on existing data. You will learn to perform text pre-processing and create custom transformers to generate new features. You will also learn to implement an NLP pipeline, create custom transformers and build a text classification model.

Know more here.

What Do You Think?

Join Our Telegram Group. Be part of an engaging online community. Join Here.

Subscribe to our Newsletter

Get the latest updates and relevant offers by sharing your email.

Copyright Analytics India Magazine Pvt Ltd

Scroll To Top