Utilisation of Data Pipeline Architecture by Indian Enterprises- by AIM Research & Hansa Cequity

The study finds out that building data pipeline architecture is a priority for all entities. While 37% of surveyees are building the architecture in-house, the rest are outsourcing it to third parties in varying extents.
Utilisation of Data Pipeline Architecture by Indian Enterprises
Listen to this story

Businesses are increasingly harnessing data for various analyses—exploratory, predictive, inferential, and causal. As the role of data increases, problems related to data flow get magnified in scale and impact. Data flow can be unreliable and in transit, bottlenecks can interrupt the flow. That is why a defined data pipeline architecture becomes critical. Data pipeline architecture ensures smooth data flow and enables real-time analytics for faster and more effective data-driven decision-making.  

A review of the existing literature help understands how data is powering modern enterprises, but at the same time, how a lack of a robust architecture or frameworks stands in the way of utilising the same to its full potential. For instance, a Capgemini study has found that while organisations accelerate their data-driven decision-making, only 22% of them can quantify the value of data in their accounting process, and only 43% can monetise the data through their products and services. To monetise data effectively, organisations need to have a mature approach to designing products and processes that capture new data. Identifying the right data sources forms the base of an effective data pipeline. This makes investment in the data and analytics pipeline of utmost importance. According to an IDC study, 87% of CXOs are of the opinion that in the next five years, their objective is to make their organisations more intelligent, and that is not possible without harnessing quality data and spending on solutions to effectively manage it. 

With an aim to understand the current data value chain in Indian enterprises across different sectors, the study touches upon various elements of a data pipeline architecture—the sources, the data format, and the type of pipeline architecture that mid to large-scale companies in India are using to build their pipelines and the challenges they face when doing so. 

The study finds out that building data pipeline architecture is a priority for all entities. While 37% of surveyees are building the architecture in-house, the rest are outsourcing it to third parties in varying extents. Depending on where a firm stands in terms of its technical maturity, organisations should hire the right expertise in-house or third-party consultants to build a strong data pipeline architecture.

37% of enterprises strongly agree with the fact that they have set methodologies and processes in place to measure the quality of data ingested in the pipeline. 40% of organisations highly feel that they have also put in place KPIs to measure the impact of their data pipeline architecture. A good understanding of business problems and identifying areas where a data-driven approach is enabling will help lay a strong foundation to build a data pipeline architecture.  

Despite conducive methodologies, standards and processes in place, as high as 71% of organisations feel that they are falling short of deriving optimal value from the data at their disposal. In fact, some of the key challenges cited for not being able to leverage data pipeline architecture are time constraints, lack of quality data, high cost and talent shortage. This is indicative of a significant lack of understanding of how to build an effective data pipeline or how to optimally leverage it. This also reflects in the high demand for data engineering professionals as analytics providers look to offer their expertise. 

The report is insightful for consumer-oriented companies across sectors to understand where companies currently stand and the areas they need to improve on. Companies in respective sectors can benchmark their efforts in terms of building effective data pipelines and identify areas where they need help. 

Read the complete report here:

Download our Mobile App

Zinnia Banerjee
Zinnia loves writing and it is this love that has brought her to the field of tech journalism.

Subscribe to our newsletter

Join our editors every weekday evening as they steer you through the most significant news of the day.
Your newsletter subscriptions are subject to AIM Privacy Policy and Terms and Conditions.

Our Recent Stories

Our Upcoming Events

3 Ways to Join our Community

Telegram group

Discover special offers, top stories, upcoming events, and more.

Discord Server

Stay Connected with a larger ecosystem of data science and ML Professionals

Subscribe to our Daily newsletter

Get our daily awesome stories & videos in your inbox

Can OpenAI Save SoftBank? 

After a tumultuous investment spree with significant losses, will SoftBank’s plans to invest in OpenAI and other AI companies provide the boost it needs?

Oracle’s Grand Multicloud Gamble

“Cloud Should be Open,” says Larry at Oracle CloudWorld 2023, Las Vegas, recollecting his discussions with Microsoft chief Satya Nadella last week. 

How Generative AI is Revolutionising Data Science Tools

How Generative AI is Revolutionising Data Science Tools

Einblick Prompt enables users to create complete data workflows using natural language, accelerating various stages of data science and analytics. Einblick has effectively combined the capabilities of a Jupyter notebook with the user-friendliness of ChatGPT.