# What’s Next For AI: Solving Advanced Math Problems

Any high school student would guess there is a cosine involved when they see an integral of a sine. Regardless of whether the person understands the thought process behind these functions, it does the job for them.
This intuition behind calculus is rarely explored. Though Newton and Leibnitz developed advanced mathematics to solve real-world problems, today most of the schools teach differential equations through semantics.

The linguistic appeal of mathematics might get grades in high school, but in the world of research, this is hysterical.

However, the researchers at Facebook AI have picked this same semantic approach, flipped it over and built a model that would solve advanced mathematical equations.

#### AIM Daily XO

##### Your newsletter subscriptions are subject to AIM Privacy Policy and Terms and Conditions.

The researchers at Facebook have ingeniously reverse-engineered the differential equations to build a dataset large enough for the language model to find the most useful patterns.

This model was able to solve the equations which were not possible with mathematics and Matlab.

### Neural Machine Translation To The Rescue

The above tree-like structure shows how an equation is split into its fundamental components — addition, power, subtraction, cosine etc.

Here constants (3 and 2) and variables (x) act as leaves, while operators (such as plus and minus) and functions are the internal nodes that connect the branches of the tree.

Organising expressions in this way provides a language-like syntax for equations — numbers and variables are nouns, while operators act as verbs.

In this approach, an NMT model is made to align the patterns of a given tree-structured problem with its matching solution (also expressed as a tree), similar to matching a sentence in one language with its confirmed translation.

This method allowed the researchers in swapping out sequences of words for sequences of symbols.

Though the hype around AI has made us into believing that it can be applied for almost everything, the reality is complex; at least mathematical equations are.

Neural networks are quite good at making approximations to classify images or text.

But solving complex mathematical equations requires precision rather than an approximation.

The ingenious way in which the researchers leveraged machine translation is as follows:

• Treat complex equations like sentences in a language.
• Break mathematical expressions into a language-like syntax.
• To do this, the symbolic maths was investigated.
• A model was trained to detect patterns in symbolic equations.
• Unpack equations into branches of variables that are compatible with seq2seq models.

### Flipping The Problem

Theoretically, using a neural machine translation(NMT) model looks straightforward. However, training such models requires large dataset. The training set should have examples of solving equations restructured as model-readable expression trees.

Building this data set required us to incorporate a range of data cleaning and generation techniques.

To do this, the researchers flipped the translation approach where, instead of generating problems and finding their solutions, they started generating solutions and led to finding their problem.

This led to the creation of millions of integration examples with subsets of integration problems as well as first- and second-order differential equations.

This data was then used to train a seq2seq transformer model with eight attention heads and six layers.

Transformers are models widely used for translation tasks. By determining what comes before a given function, the model was able to predict the solutions for different kinds of equations.

When presented with 5,000 unseen expressions, the model demonstrated, claim the researchers, accuracy of 94 % and 81.2 % respectively, for first- and second-order differential equations.

### What Does The Future Hold

Last year, Google researchers used machine learning algorithms to solve partial differential equations that otherwise would take aeons to solve them. There was also this neural ODEs paper from late 2018, which showed promising results. The role of neural networks in the field of mathematics is slowly on the rise and can help researchers in finding solutions faster than usual. These models are made tireless, smart and can be leveraged to expose blind spots in the existing mathematical approaches.

The researchers at Facebook AI believe that their approach has a broader range of applications in logic-based fields such as physics and result in a software toolkit which can assist the researchers to plug and play mathematical equations to find more accurate solutions.

## The Deep Learning Curve is a technology-based podcast hosted by Vijayalakshmi Anandan - Video Presenter and Podcaster at Analytics India Magazine. This podcast is the narrator's journey of curiosity and discovery in the world of technology.

I have a master's degree in Robotics and I write about machine learning advancements.

## Our Upcoming Events

24th Mar, 2023 | Webinar
Women-in-Tech: Are you ready for the Techade

27-28th Apr, 2023 I Bangalore
Data Engineering Summit (DES) 2023

23 Jun, 2023 | Bangalore
MachineCon India 2023 [AI100 Awards]

21 Jul, 2023 | New York
MachineCon USA 2023 [AI100 Awards]

### Telegram group

Discover special offers, top stories, upcoming events, and more.

### Discord Server

Stay Connected with a larger ecosystem of data science and ML Professionals

### Data Science Hiring Process at Park+

Park+ is currently hiring data analysts in Gurugram

### Is solid-state LiDAR the key to autonomous driving?

Even if commercially accessible fully autonomous vehicles are still years away, lowering the cost of state-of-art LIDAR can spur development.

### Larry Page’s ‘AI Vision’ Dies with Google

Google owns 93% of the search engine market share whereas Microsoft has a mere 3%

### The Rising 2023: Best Firms for Women in Tech

AIM gave away awards in two prestigious categories: ‘Best Firms for Women in Tech Awards’ & ‘Women in Tech Leadership Award’ at The Rising 2023

### Council Post: The Rise of Generative AI and Living Content

In this era of content, the use of technology, such as AI and data analytics, is becoming increasingly important as it can help content creators personalise their content, improve its quality, and reach their target audience with greater efficacy. AI writing has arrived and is here to stay. Once we overcome the initial need to cling to our conventional methods, we can begin to be more receptive to the tremendous opportunities that these technologies present.

### Meet the MVP of GPT-4 Team

The core contributor of GPT4 has mostly kept a low profile

### OpenAI Publishes Yet Another Lame Paper

Published in collaboration with OpenResearch and the University of Pennsylvania, the paper tries to qualify GPT technology as a general-purpose technology

### Meet the Winners of ‘Women in AI Leadership Awards’ at The Rising 2023

All submissions were assessed by our panel of editors and industry veterans, and awardees were selected after careful reviewing.

### ViperGPT vs GPT-4

ViperGPT uses Python code to interpret and solve image queries.

### Council Post: Future of Careers in AI (after the revolution of Generative AI)

The way many people work could be fundamentally changed by generative AI. Some people might be excited by this concept. What this entails for others may be a concern. In industries where automation is possible, there is no doubt that this technology has the potential to greatly boost productivity and save costs.