Transforming The Face Of Healthcare One Step At A Time, Predictive Analytics Is The Hottest Trend Now

Imagine a future where each individual will have a healthcare treatment and care plan exclusively crafted for him/her? Exciting, right? Thankfully, we’re not very far away from that dream. Predictive analytics and Big Data are rapidly transforming the face of healthcare as we speak.

Today, as each step in the healthcare chain is digitized, healthcare providers and professionals are accumulating huge amounts of data (patient names, medical history, diseases, prescriptions, diagnostic tests, medical insurance, etc.). However, storing and managing this data in a way that is helpful to the healthcare provider or the patient is immensely challenging because of its sheer size and cost entailed.

In fact, according to a McKinsey report (2013),

Subscribe to our Newsletter

Join our editors every weekday evening as they steer you through the most significant news of the day, introduce you to fresh perspectives, and provide unexpected moments of joy
Your newsletter subscriptions are subject to AIM Privacy Policy and Terms and Conditions.

“After more than 20 years of steady increases, healthcare expenses now represent 17.6 percent of GDP —nearly $600 billion more than the expected benchmark for a nation of the United States’s size and wealth.” 

This emphasizes that expenses in healthcare are rising at an alarming rate and there is an urgent need to implement a smart structure where health records and patient history can be stored in an organized manner, helping to provide both better care and treatment as well as cut down costs.

Predictive Analytics is basically a structure of artificial neural networks and decision trees that can predict new patterns or trends in data rooting on the knowledge present in the historical data. By incorporating analytics in healthcare, we will be equipped to predict the future. Vinnie Ramesh, Chief Technology Officer, Co-founder of Wellframe, states:

“Predictive analytics is…applying what doctors have been doing on a larger scale. What’s changed is our ability to better measure, aggregate, and make sense of previously hard-to-obtain or non-existent behavioral, psychosocial, and biometric data. Combining these new datasets with the existing sciences of epidemiology and clinical medicine allows us to accelerate progress in understanding the relationships between external factors and human biology—ultimately resulting in enhanced reengineering of clinical pathways and truly personalized care.”

Though predictive analytics presents before us a huge opportunity to scale up the quality of healthcare and treatment, we cannot ignore some of the major challenges facing it.

One of the primary challenges is implementing analytics within the healthcare systems, which means incurring IT costs, which a lot of providers can’t afford.

Let us look at some other hurdles that prevent the adoption of analytics in the field of healthcare:

  • Data structure issues: A bulk of this data in healthcare is unstructured, fragmented, and dispersed. This makes it very difficult to analyze and aggregate data in such format. Furthermore, it is a known fact that data in healthcare is much more diverse as compared to data from other fields.
  • Security and Compliance issues: When data is stored in such large bulk, security becomes a major concern since we’re talking about confidential patient data. Being stored in a centralized system, this data is freely available and hence, becomes highly susceptible to attacks.
  • Data Storage and Transfer issues: Organizations integrating and analyzing data have to bear a considerable amount of data storage and transfer costs. When data is stored in the cloud, there is a different layer of security related to retrieving, transferring, and loading of patient data.
  • Lack of Skilled Professionals: While it is true that technology is evolving and advancing at a rapid pace, the amount of experienced and skilled individuals who are constantly updating themselves in sync with these new trends is considerably low. Managing such large amount of confidential healthcare data demands a certain level of skill and efficiency.

Irrespective of these challenges, predictive and big data analytics hold a tremendous potential to transform the face of the healthcare industry. Healthcare organizations that rely on data analytics can improve on areas as R&D, surgery, genome study, and so much more. The better we can understand the medical history and needs of individual patients, the better we can treat them using a personalized treatment approach.

The good news is that Big Data and predictive analytics have already been put to good use in the field of healthcare in many countries.

Doctors and patients can now easily keep track of their health through Electronic Health Record (EHR), a digital record where every individual patient’s medical history, demographics, diagnostics tests, etc., are stored and maintained. While doctors can easily make the changes in this as they come, it involves no paperwork and one doesn’t have to worry about data replication. Furthermore, EHRs are programmed in a way that they can remind patients about their upcoming tests, or prescription drugs refill.

Tools such as Clinical Decision Support (CDS) allow healthcare organizations to analyze medical data in real-time and offer doctors and medical professionals with the necessary advice as they write out prescriptions. Researchers are coming up with personal analytics devices that will continuously gather the patient data and store it in the cloud. Also, symptom calculators are gradually becoming the “recommendation engines” of the healthcare industry enabling patients to self-diagnose their health problems.

Suppose you have the flu, you just need to go online and enter your symptoms in the symptom calculator and the software’s algorithm will match you with others who have had similar symptoms and also show you the diagnosis that was most common. Approaches like ask a doctor online, online consultation, digital prescriptions etc have also emerged lately.

Charlie Farah, the Asia-Pacific market development healthcare and public sector director of Qlik, stated:

“There is a real buzz around India on the absolute benefits analytics and data discovery can deliver to an organization. Wockhardt Hospitals Ltd., one of India’s leading super-specialty care, deployed the Qlik Platform as a key tool in its journey on establishing a companywide adoption of data analytics.”

Thus, it is needless to say that with predictive analytics in the scene, the future of healthcare industry sure does look promising.

Dr Aditi Gupta
Dr Aditi Gupta Jha has been a practising physician for over 6 years now, working at the emergency department of hospitals like Fortis and St. Philomena's. She has completed her M.D and was awarded Doctor's degree from Angeles University Foundation, Philippines. She is also the consulting physician & chief editor at JustDoc, a platform that connects patients with top doctors via online consultation.

Download our Mobile App


AI Hackathons, Coding & Learning

Host Hackathons & Recruit Great Data Talent!

AIM Research

Pioneering advanced AI market research

Request Customised Insights & Surveys for the AI Industry

The Gold Standard for Recognizing Excellence in Data Science and Tech Workplaces

With Best Firm Certification, you can effortlessly delve into the minds of your employees, unveil invaluable perspectives, and gain distinguished acclaim for fostering an exceptional company culture.

AIM Leaders Council

World’s Biggest Community Exclusively For Senior Executives In Data Science And Analytics.

3 Ways to Join our Community

Telegram group

Discover special offers, top stories, upcoming events, and more.

Discord Server

Stay Connected with a larger ecosystem of data science and ML Professionals

Subscribe to our Daily newsletter

Get our daily awesome stories & videos in your inbox