Can You Learn Machine Learning Without Linear Algebra?

Machine learning is a field that has emerged out of numerous innovations in computational sciences, spanning centuries. So, can a machine learning enthusiast skip linear algebra and flourish? The short answer is — NO. 

However, that’s not a complete picture.

Linear Algebra is a branch of mathematics that is widely used throughout science and engineering. Good understanding of linear algebra is essential for understanding and working with many ML algorithms, especially deep learning algorithms. 

AIM Daily XO

Join our editors every weekday evening as they steer you through the most significant news of the day, introduce you to fresh perspectives, and provide unexpected moments of joy
Your newsletter subscriptions are subject to AIM Privacy Policy and Terms and Conditions.

To understand this better, we are listing down the areas where an ML enthusiast will run into  linear algebra in the preliminary stages of machine learning:

Scalars, Vectors, Tensors: Finding the modulus (size), the angle between vectors (dot or inner product) and projections of one vector onto another and to examine how the entries describing a vector will depend on what vectors we use to define the axes 


Download our Mobile App



Matrices: Matrices can transform a description of a vector from one basis (set of axes) to another. For example, figuring out how to apply a reflection to an image and manipulate images.

Length squared sampling in matrices, Singular value decomposition, Low-rank approximation are few techniques which are widely used in the data processing.

For example, the singular value decomposition finds the best-fitting k-dimensional subspace for k= 1,2,3,…, for the set of N data points. Here, “best” means minimising the sum of the squares of the perpendicular distances of the points to the subspace, or equivalently, maximising the sum of squares of the lengths of the projections of the points onto this subspace.

SVD is traditionally used in the principal component analysis (PCA), which in turn is popularly used for feature extraction and for knowing how significant the relationship among the features or properties is to an outcome.

The word ‘mathematics’ brings in a ton of concepts — and this might scare away the beginners. However, if one manages to look closely, then much of the maths used in basic ML is usually covered in high school. 

The whole point here is to find the distance between points, the shorter path between points and for this, one needs linear algebra.

Why Reinvent The Wheel, When We Have Python Libraries

There is no denying the fact that building ML algorithms from scratch is a thing of the past. Modern-day programming platforms offer plenty of options where a single line of code would invoke a monstrous algorithm in the background. This works for those who want to get an idea of how ML plays out. However, if one is even remotely serious about putting an ML model into production then many issues surface. 

For instance, a neural network is built around simple linear equations like Y = WX + B, which contain something called as weights W. These weights multiply with the input X and play a crucial in how the model predicts. The prediction scores can go downhill if a wrong weight gets updated and as the network gets deeper i.e addition of more layers(columns of connected nodes), the error magnifies and the results miss the target. 

Even to figure this out, one should have had already known of the presence of a system of simple equations that govern simple neural networks. With this knowledge, one can not only build the intuition of how a model performs but can also use it to compare with other models. Because, when we say a model is different, what it actually means is that equations are different.

One can build on this knowledge to learn about how the models optimise in the case of using gradient descent methods and how the change in learning rate signifies the performance of an algorithm.

via 3Blue1Brown

The last century has seen tremendous innovation in the field of mathematics. New theories have been postulated and traditional theorems have been made robust by persistent mathematicians. And we are still reaping the benefits of their exhaustive endeavours to build intelligent machines. The field of machine learning is built on some ingenious mathematical and logical hypotheses and tools.

There are other rudimentary topics, which can make the life of a typical machine learning engineer easy:

  • Law of large numbers
  • The geometry of high dimensions
  • Random walks in Euclidean space
  • Gradient Descent methods
  • Graph partitioning
  • Bayesian or belief networks

Also, see:

Sign up for The Deep Learning Podcast

by Vijayalakshmi Anandan

The Deep Learning Curve is a technology-based podcast hosted by Vijayalakshmi Anandan - Video Presenter and Podcaster at Analytics India Magazine. This podcast is the narrator's journey of curiosity and discovery in the world of technology.

Ram Sagar
I have a master's degree in Robotics and I write about machine learning advancements.

Our Upcoming Events

24th Mar, 2023 | Webinar
Women-in-Tech: Are you ready for the Techade

27-28th Apr, 2023 I Bangalore
Data Engineering Summit (DES) 2023

23 Jun, 2023 | Bangalore
MachineCon India 2023 [AI100 Awards]

21 Jul, 2023 | New York
MachineCon USA 2023 [AI100 Awards]

3 Ways to Join our Community

Telegram group

Discover special offers, top stories, upcoming events, and more.

Discord Server

Stay Connected with a larger ecosystem of data science and ML Professionals

Subscribe to our Daily newsletter

Get our daily awesome stories & videos in your inbox
MOST POPULAR

Council Post: The Rise of Generative AI and Living Content

In this era of content, the use of technology, such as AI and data analytics, is becoming increasingly important as it can help content creators personalise their content, improve its quality, and reach their target audience with greater efficacy. AI writing has arrived and is here to stay. Once we overcome the initial need to cling to our conventional methods, we can begin to be more receptive to the tremendous opportunities that these technologies present.