Types Of Activation Functions In Neural Networks And Rationale Behind It

Activation functions are important for a Artificial Neural Network to learn and understand the complex patterns. The main function of it is to introduce non-linear properties into the network. What it does is, it calculates the 'weighted sum' and adds direction and decides whether to 'fire' a particular neuron or not. I'll be explaining about several kinds of non-linear activation functions, like Sigmoid, Tanh, ReLU and leaky ReLU. The non linear activation function will help the model to understand  the complexity and give accurate results. In this article, I have described some commonly used activation function. There are various activation functions and research is still going on to identify the optimum function for a specific model. Once you know the logic of the model, you can
Subscribe or log in to Continue Reading

Uncompromising innovation. Timeless influence. Your support powers the future of independent tech journalism.

Already have an account? Sign In.

📣 Want to advertise in AIM? Book here

Picture of Kishan Maladkar
Kishan Maladkar
Kishan Maladkar holds a degree in Electronics and Communication Engineering, exploring the field of Machine Learning and Artificial Intelligence. A Data Science Enthusiast who loves to read about the computational engineering and contribute towards the technology shaping our world. He is a Data Scientist by day and Gamer by night.
Related Posts
AIM Print and TV
Don’t Miss the Next Big Shift in AI.
Get one year subscription for ₹5999
Download the easiest way to
stay informed