AIM Banners_978 x 90

Breathing Life Into Robots Through Simulators

Simulation enables engineers to prototype rapidly and with minimal human effort. In robotics, physics simulations provide a secure and low-cost virtual playground for robots to gain physical skills through Deep Reinforcement Learning (DRL). However, simulations use hand-derived physics that will have difficulty adapting when tested on real hardware. This challenge is termed the "sim-to-real gap" or the domain adaptation problem. Reinforcement-based approaches(  RL-CycleGAN and RetinaGAN) have been utilised to bridge the simulation-to-reality gap for purely perceptual tasks, such as grasping. However, the gap is still present because of the dynamic characteristics of robotic systems. In this case, researchers are prompted to ask whether or not they can find a more accurate physics simu
Subscribe or log in to Continue Reading

Uncompromising innovation. Timeless influence. Your support powers the future of independent tech journalism.

Already have an account? Sign In.

📣 Want to advertise in AIM? Book here

Picture of Ritika Sagar
Ritika Sagar
Ritika Sagar is currently pursuing PDG in Journalism from St. Xavier's, Mumbai. She is a journalist in the making who spends her time playing video games and analyzing the developments in the tech world.
Related Posts
AIM Print and TV
Don’t Miss the Next Big Shift in AI.
Get one year subscription for ₹5999
Download the easiest way to
stay informed