Ridge Regression Vs Lasso: Compare How They Work?

sinewaves-bn
As machine learning evolved, the conventional way of solving problems observed a diminishing shift. ML offered novel ways to tackle real-world problems with its methods and algorithms. With ML providing the ability for computers to learn from data, the problem could be analysed with different perspectives quickly. ML takes account of the optimisation technique in linear programming. This means that ML is generally considered as an optimisation problem. Concepts such as regression help with establishing a relationship between the vast amounts of data required for learning. In this article, we will analyse two extensions of linear regression known as ridge regression and lasso, which are used for regularisation in ML. How Regression Analysis Impacts ML Regression is basically a math
Subscribe or log in to Continue Reading

Uncompromising innovation. Timeless influence. Your support powers the future of independent tech journalism.

Already have an account? Sign In.

📣 Want to advertise in AIM? Book here

Picture of Abhishek Sharma
Abhishek Sharma
I research and cover latest happenings in data science. My fervent interests are in latest technology and humor/comedy (an odd combination!). When I'm not busy reading on these subjects, you'll find me watching movies or playing badminton.
Related Posts
AIM Print and TV
Don’t Miss the Next Big Shift in AI.
Get one year subscription for ₹5999
Download the easiest way to
stay informed