Top Research Papers On Recurrent Neural Networks For NLP Enthusiasts

Image by Source: Google Cloud blog
Recurrent Neural Networks (RNN) have become the de facto neural network architecture for Natural Language Processing (NLP) tasks. Over the last few years, recurrent architecture for neural networks has advanced quite a lot with NLP tasks — from Named Entity Recognition to Language Modeling through Machine Translation. As compared to Artificial Neural Networks (ANN), RNNs deal with sequential data, thanks to their “memory”. The success of RNN in NLP tasks can be ascribed to their ability to deal with sequential data, as opposed to ANNs which are known for not having any notion of time. Also, the only input ANNs take into consideration is the current example they are being fed, meanwhil
Subscribe or log in to Continue Reading

Uncompromising innovation. Timeless influence. Your support powers the future of independent tech journalism.

Already have an account? Sign In.

📣 Want to advertise in AIM? Book here

Picture of Richa Bhatia
Richa Bhatia
Richa Bhatia is a seasoned journalist with six-years experience in reportage and news coverage and has had stints at Times of India and The Indian Express. She is an avid reader, mum to a feisty two-year-old and loves writing about the next-gen technology that is shaping our world.
Related Posts
AIM Print and TV
Don’t Miss the Next Big Shift in AI.
Get one year subscription for ₹5999
Download the easiest way to
stay informed