A Beginners’ Guide to Cross-Entropy in Machine Learning

Machine learning and deep learning models are normally used to solve regression and classification problems. In a supervised learning problem, during the training process, the model learns how to map the input to the realistic probability output.
Today we have many real-world applications which are based on machine learning such as churn modeling, image classification, customer segmentation, etc. For all of these kinds of applications, businesses need to optimize their models, obtain the model’s optimum accuracy and efficiency model. Therefore it is a bit critical to obtain a higher-performing model by tuning a certain number of parameters. One such parameter is a loss function and among which mostly used one is cross-entropy. In this article, we will be discussing cross-entropy functions and their importance in machine learning, especially in classification problems. The important concepts that we will discuss here in this article are listed below. Table of Contents Need of Cross-EntropyWhat is Entropy?What is cross-entropyCross entropy as loss function Code Glimpses Let’s begin our discussion one by one. Need of Cross-Entropy Machine learning and deep learning models are normally used to solve regressi
Subscribe or log in to Continue Reading

Uncompromising innovation. Timeless influence. Your support powers the future of independent tech journalism.

Already have an account? Sign In.

📣 Want to advertise in AIM? Book here

Picture of Vijaysinh Lendave
Vijaysinh Lendave
Vijaysinh is an enthusiast in machine learning and deep learning. He is skilled in ML algorithms, data manipulation, handling and visualization, model building.
Related Posts
AIM Print and TV
Don’t Miss the Next Big Shift in AI.
Get one year subscription for ₹5999
Download the easiest way to
stay informed