Active Hackathon

Enhancing Data Governance Capabilities with Databricks’ Delta Live Tables

These concepts sound straightforward, but why exactly are organizations not doing data governance or not doing it correctly? 
Enhancing Data Governance Capabilities with Databricks’ Delta Live Tables
Listen to this story

Today organizations are increasingly data-driven. With technology advancements and storage costs declining, the volume of data is growing exponentially by the day. While data storage is no longer a concern, managing the acquired data has become a problem.

Data governance is critical to every organization, yet not everyone has successfully implemented a good data governance strategy. According to Gartner, “Every year, poor data quality costs organizations an average of $12.9 million. Besides the immediate impact on revenue, over the long-term, poor-quality data increases the complexity of data ecosystems and leads to poor decision making.” 

THE BELAMY

Sign up for your weekly dose of what's up in emerging technology.

There are two components of data governance: data catalogue and data lineage.

According to Oracle, one of the world’s largest database providers, a data catalogue is an ‘organized inventory of data assets’ that uses metadata to help organizations manage their data.” In contrast, data lineage is how these data assets are created and connected with each other so an audit trail can be formed.

These concepts sound straightforward, but why exactly are organizations not doing data governance or not doing it correctly? 

Challenges firms face in enhancing data governance capabilities:

  • It is not easy to keep a single source of the truth.

Organizations can easily create duplicates of their data. If this data gets synced back to the data catalogue tool, it can generate confusion for users who don’t know which version of the table is the latest.

It is not easy to keep up with the ever-growing amount of data. New feeds and ETL processes make it hard to manage data definitions. Most of the time, organizations lack a dedicated team to manage metadata.

  • Multiple developers work on a project and work in a silo without knowing how others use the data.

In order to create a data audit trail, one needs to understand how the data is being utilized. Without code standardization or communications between developers, code parsing tools are useless and won’t generate the linkage between data.

Code evolves faster than documentation can keep up.

Like data growth, code also grows exponentially, especially in a large team. If the code grows without any standardization or automated way to extract the lineage that can accommodate different favour of development, it will be impossible to maintain a lineage diagram. 

When choosing data catalogue tools, it is important to consider the following factors:

  • The tool conforms to industry standards
  • It does not require a lot of developer intervention
  • It can operate with other existing tools
  • Tight integration with the code

Databricks is known for its excellence in data processing. Recently, Databricks released new frameworks to make data governance easier and more efficient. For example, Databrick’s Delta Live Tables (DLT) is a framework created by Databricks to make data cataloguing and lineaging within the Databricks ecosystem, and the tool also conforms to industry standards.

Delta Live Tables is not just a data governance tool; it also supports many distinctive features like streaming tables, audit logs, QA and ETL framework, among other things. However, in this post, we will focus on the data governance aspect of DLT.

Delta Live Tables support both SQL and Python. However, to take advantage of this framework, a specific syntax needs to be followed.

To create a Delta Live Table in SQL, the only thing that needs to change is to use the keyword LIVE as follows:

Python’s syntax is more complex; however, by simply adding a declaration, you can make it simpler:

So, what is the magic behind this LIVE keyword if we are not streaming?

Delta Live Tables go far beyond streaming. 

Features of Delta Live Tables

  • Continuous or triggered pipeline – Whether you are running a streaming job or just doing a one-time load, you can use Delta Live Tables.
  • Validations – Setting the expectations right within the table definition, so there is no need to get another validation pipeline set up. An example of expectations is “revenue is greater than 0.” You can choose to drop or retain the records or even halt the pipeline.
  • Data lineage – You no longer need a separate tool to generate a lineage diagram. Instead, you can easily migrate the SQL or Python notebook to DLT format and take advantage of the lineage that comes with the data pipeline. It will generate by itself without needing to onboard these to a tool.
  • ‘Develop and Production’ mode gives you the flexibility to test your code without impacting production jobs. 
  • Enhanced auto-scaling is an advanced scaling mechanism that will allow you to start or stop a cluster automatically, resulting in more savings.
  • Logging and monitoring – DLT come with a logging and monitoring dashboard that allows you to track job status step by step without having to create other monitoring tools.

Let us look at a retail sales pipeline developed by Databricks:

https://github.com/databricks/delta-live-tables-notebooks/blob/main/sql/Retail%20Sales.sql

The example above highlights four features:

  1. Streaming pipeline
  2. Data validation
  3. Data lineage
  4. Validation dashboard

Streaming Pipeline

The syntax for creating a streaming pipeline is as follows:


This raw pipeline is simply trying to stream the JSON files from the specified location. As a result, it is now simpler to build a streaming pipeline using DLT.

Data Validation

The next step is to perform data clean-up. The traditional ETL requires separate steps for error handling and data validation. As a result, this logic will be written in the SQL query, and other developers will try to decode the purpose. In DLT, there is a descriptive way to handle these records called expectation. The syntax is as follows:

Data Lineage

A flow chart in the DLT job shows how the data move from one place to another. Therefore, there is no need to run it through another parsing tool to generate these diagrams.

View Post

Diagram

Description automatically generated

Validation Dashboard

Each step automatically provides a summary of the expectations and data quality checks, saving time on the creation and upkeep of additional toolkits. The time needed to evaluate the code to ensure data validation is also reduced by having these available automatically.

A picture containing text

Description automatically generated
Graphical user interface, application

Description automatically generated

Databricks’ Delta Live Tables Help Enterprises Enhance their Data Governance Capabilities 

Data teams are constantly on the go. However, with Databricks’ Delta Live Tables, they can streamline reliable data pipelines and quickly find and manage enterprise data assets across various clouds and data platforms. Additionally, they can simplify the enterprise-wide governance of data assets, both structured and unstructured.

We have illustrated how to use Databricks’ Delta Live Tables to solve issues in data governance. For technical deep dive and all features available in Delta Live Tables, click here.

More Great AIM Stories

Jason Yip
Jason Yip, Senior Manager, Data Engineering- Tredence

Our Upcoming Events

Conference, Virtual
Genpact Analytics Career Day
3rd Sep

Conference, in-person (Bangalore)
Cypher 2022
21-23rd Sep

Conference, in-person (Bangalore)
Machine Learning Developers Summit (MLDS) 2023
19-20th Jan

Conference, in-person (Bangalore)
Data Engineering Summit (DES) 2023
21st Apr, 2023

3 Ways to Join our Community

Discord Server

Stay Connected with a larger ecosystem of data science and ML Professionals

Telegram Channel

Discover special offers, top stories, upcoming events, and more.

Subscribe to our newsletter

Get the latest updates from AIM
MOST POPULAR

The curious case of Google Cloud revenue

Porat had earlier said that Google Cloud was putting in money to make more money, but even with the bucket-loads of money that it was making, profitability was still elusive.

Global Parliaments can do much more with Artificial Intelligence

The world is using AI to enhance the performance of its policymakers. India, too, has launched its own machine learning system NeVA, which at the moment is not fully implemented across the nation. How can we learn and adopt from the advancement in the Parliaments around the world? 

Why IISc wins?

IISc was selected as the world’s top research university, trumping some of the top Ivy League colleges in the QS World University Rankings 2022

[class^="wpforms-"]
[class^="wpforms-"]