AIM Banners_978 x 90

Python Guide to Precision-Recall Tradeoff

Precision Recall Tradeoff
What do you think should we consider only the accuracy score as a benchmark for our classification task? Many beginners in this field have misunderstood; getting good accuracy for classification models means they have built a perfect model which classifies every instance. Well, you can consider only accuracy as a benchmark for regression problems. For better understanding, let's take a famous and general example that every Data Science enthusiast comes through, i.e. Diabetes Prediction. So here, both classes means whether a person has diabetes or not is equally important under different conditions. Say you have trained your model for 200K samples with 180K samples as a negative class, 20K samples as a positive class, and you have achieved accuracy greater than 95% sounds good. Hold on!
Subscribe or log in to Continue Reading

Uncompromising innovation. Timeless influence. Your support powers the future of independent tech journalism.

Already have an account? Sign In.

📣 Want to advertise in AIM? Book here

Picture of Vijaysinh Lendave
Vijaysinh Lendave
Vijaysinh is an enthusiast in machine learning and deep learning. He is skilled in ML algorithms, data manipulation, handling and visualization, model building.
Related Posts
AIM Print and TV
Don’t Miss the Next Big Shift in AI.
Get one year subscription for ₹5999
Download the easiest way to
stay informed