A Guide to Text Preprocessing Using BERT

This blog discuss about how to use SOTA BERT for pre-processing the textual data
Various state-of-the-art NLP applications like sentiment analysis, question answering, smart assistance, etc. require a tremendous amount of data. This large amount of data can be directly fed to the machine learning model. Almost all the text-based applications require a lot of pre-processing with the textual data such as creating the embedding vectors from scratch using the word frequency counter. This consumes a lot of effort and time. To overcome this, transfer learning models are used now for all complex pre-processing tasks. Here, we just need to feed our raw text to the transfer learning model and the rest of the processes are taken care of by it.  In contrast to this, we are going to discuss one such transfer learning framework, BERT, in this article. We will see how to use
Subscribe or log in to Continue Reading

Uncompromising innovation. Timeless influence. Your support powers the future of independent tech journalism.

Already have an account? Sign In.

📣 Want to advertise in AIM? Book here

Picture of Vijaysinh Lendave
Vijaysinh Lendave
Vijaysinh is an enthusiast in machine learning and deep learning. He is skilled in ML algorithms, data manipulation, handling and visualization, model building.
Related Posts
AIM Print and TV
Don’t Miss the Next Big Shift in AI.
Get one year subscription for ₹5999
Download the easiest way to
stay informed