Beginner’s Guide to NumPy: A Must Have Python Library in Data Scientist Toolkit

NumPy, which stands for Numerical Python, is a fundamental library for mathematical computations. This library can be used for different functions in Linear algebra, Matrix computations, Fourier Transforms etc. In Python, array.array function is limited to only one dimension which can be substituted with NumPy for multi dimensional operations. One can compute the multidimensional array functions like the figure below,

In this article we will go through some of the important built-in function of NumPy to understand the logic and mathematics behind it. By using NumPy, you can speed up your workflow, and interface with other packages in the Python ecosystem, like scikit-learn, that use NumPy under the hood. Let us dive into computing the math behind these.

1. Arrays

An array is a set of elements of a data type. The shape of the NumPy array can be defined with an enclosed tuple of positive integers. The order of a NumPy array is given by the dimensions. We can index and slice a particular element from the array, and initialize an array with square brackets like below,

2. Indexing

Like Python lists, the Numpy array can be indexed and sliced with the right number of parameters. It can be done as described below,

3. Slicing

Index slicing is as it sounds, slicing one or multi dimensional array into different subsets like below example,

With the use of negative numbers, we can compute the functions in the reverse order like the example below,

Let us consider a multi-dimensional array and try to slice it.

We can implement the following code to slice it,

4. Matrix Algebra

After these steps, matrix multiplication is important, which can be done in two ways. We can either use the dot function, which applies a matrix-matrix, matrix-vector, or inner vector multiplication to its two arguments:

5. Matrix Computations

Functions such as finding the inverse of a matrix and determinant of a matrix can also be done with NumPy like below,

6. Statistical Computations

Most of the times it is useful to store datasets in NumPy arrays. It provides a number of functions to calculate statistics of datasets in arrays. Let us calculate some properties of the matrix B,

Download our Mobile App

Kishan Maladkar
Kishan Maladkar holds a degree in Electronics and Communication Engineering, exploring the field of Machine Learning and Artificial Intelligence. A Data Science Enthusiast who loves to read about the computational engineering and contribute towards the technology shaping our world. He is a Data Scientist by day and Gamer by night.

Subscribe to our newsletter

Join our editors every weekday evening as they steer you through the most significant news of the day.
Your newsletter subscriptions are subject to AIM Privacy Policy and Terms and Conditions.

Our Recent Stories

Our Upcoming Events

3 Ways to Join our Community

Telegram group

Discover special offers, top stories, upcoming events, and more.

Discord Server

Stay Connected with a larger ecosystem of data science and ML Professionals

Subscribe to our Daily newsletter

Get our daily awesome stories & videos in your inbox
MOST POPULAR

Can OpenAI Save SoftBank? 

After a tumultuous investment spree with significant losses, will SoftBank’s plans to invest in OpenAI and other AI companies provide the boost it needs?

Oracle’s Grand Multicloud Gamble

“Cloud Should be Open,” says Larry at Oracle CloudWorld 2023, Las Vegas, recollecting his discussions with Microsoft chief Satya Nadella last week. 

How Generative AI is Revolutionising Data Science Tools

How Generative AI is Revolutionising Data Science Tools

Einblick Prompt enables users to create complete data workflows using natural language, accelerating various stages of data science and analytics. Einblick has effectively combined the capabilities of a Jupyter notebook with the user-friendliness of ChatGPT.