As the buzz around data science grows every day, there is a slew of self-taught professionals who have kick-started the machine learning journey with Andrew Ng’s online courses. Many enthusiasts are gravitating towards the computer science field. But if one wants to pursue a career in Machine Learning, they need to be familiar with statistics and linear algebra. With computer science and ML applications becoming more pervasive in everyday life, people from a non-technical background are also interested in joining the field. In this article, we have discussed in-depth roles a person from non-tech background can explore in the data science/AI field. 

Some of the most popular ML applications from our everyday life are virtual personal assistants such as Google Now, Alexa, Cortana and Siri, among others. From product recommendations feature on e-commerce sites to online fraud detection and Google Translate, ML is powering most of our everyday applications.

How Does One Explain Machine Learning In Layman’s Terms?

ML is where computers learn without being explicitly programmed. For example, an algorithm which is trained on a set of images of cats will recognise cats; the algorithms are tweaked with different datasets which will result in a different output.

AIM Daily XO

Join our editors every weekday evening as they steer you through the most significant news of the day, introduce you to fresh perspectives, and provide unexpected moments of joy
Your newsletter subscriptions are subject to AIM Privacy Policy and Terms and Conditions.

There are two main techniques in ML — supervised learning and unsupervised learning. According to Dataaspirant, supervised learning is a data mining task of inferring a function from labelled training data. The training data consists of a set of training examples. In supervised learning, each example has an input object (a vector) and the desired output value (the supervisory signal). A supervised learning algorithm analyses the training data and produces an inferred function, which can be used for mapping new examples.

In unsupervised learning, ML researchers try to find patterns in unlabeled data. Some of the most commonly used unsupervised learning algorithms are K-means clustering, hierarchical clustering and Hidden Markov models.

Download our Mobile App

Pointers For People Who Want To Enter Machine Learning Field


Whatever is your primary source of learning, ML is a buzzing field with major companies like Microsoft, Google, IBM and CTS stepping up hiring for this role. There are several success stories emerging from India where professionals built up their machine learning foundation and transitioned successfully to this field. In India, many ML openings do not require a higher degree and domestic analytics companies hire talent with relevant work experience in machine learning. On the other hand, startups expect a degree of self-learning ability and passion.  

As India is heading towards Digital India, the IT industry will require 50 percent more workforce equipped with digital skills. Additionally, global tech companies such as Adobe and Nielsen are also setting up their Centres of Excellence in India to strengthen their in-house capabilities and tap into talent. Professionals from data engineering and ML space are in high demand and companies are grappling to fill these positions. Finding and attracting ML and data science talent has become a strategic imperative for every company.