Top 10 Tools To Kickstart Your MLOps Journey In 2021

Top 10 Tools To Kickstart Your MLOps Journey In 2021

The MLOps market is expected to grow by almost $4 billion by 2025, according to analytics firm Cognilytica. Amazon, Google, Microsoft, IBM, H2O, Domino, DataRobot and have all incorporated MLOPs capabilities into their platforms. 

Most companies are using MLOPs for automation pipeline, monitoring, lifecycle management, and governance. According to Algorithmia, last year, close to 22 percent of companies have had machine learning models in production for 1-2 years, demonstrating a reasonably significant transition towards productionization even if it is still early for most companies. 

In this article, we list the best open-source MLOps tools and services to help businesses and individuals kickstart their MLOps journey


Algorithmia is a single solution platform for all stages of ML operations (MLOps) and management lifecycle. It enables ML and operations teams to work together on complex machine learning applications in one central location. At present, more than 100,000 engineers and data scientists are using the platform, including the staff of the United Nations and multiple Fortune 500 companies. 

All the experiments and projects can be found here

Comet ML

Comet enables data scientists and teams to track, compare, explain and optimise experiments and models across the entire lifecycle. The complete examples and libraries are available on GitHub

Also, check out how Uber manages machine learning experiments with comet here


DVC is an open-source ‘version control system’ for machine learning projects. It tracks machine learning models and data sets. The platform has been built to make ML models shareable and reproducible. DVC is designed to handle large files, data sets, machine learning models, and metrics and code. You can experiment with the DVC project here


The Kubeflow project is dedicated to making ‘deployments’ of ML workflows on ‘Kubernetes’ simple, portable and scalable. It provides components for each stage in the ML lifecycle, from exploration to training and deployment. Check out how to install Kubeflow and experiments here


Metaflow was initially developed at Netflix to boost the productivity of data scientists working on various projects, from classical statistics to SOTA deep learning. It is a Python/R library that helps scientists and engineers build and manage real-life data science projects. The source code is available on GitHub


MLFlow is an open source platform for managing the machine learning lifecycle, including experimentation, reproducibility, deployment, and a central model registry. It currently offers four components: tracking, projects, models, and registry. The source code for MLFlow is available on GitHub

Also, check out deploying R Models with MLFlow and Docker here

Neptune is a metadata store for MLOps, developed for teams that run a lot of experiments. It provides a single place to log, store, display, organise, compare, and query all model building metadata. In addition, the MLOps platform is used for experiment tracking, model registry, and monitoring ML runs Live. Check out open source repositories and projects on GitHub


Polyaxon is a machine learning platform for Kubernetes (also used as MLOps tools for experimentation and automation). The platform helps in building, training, and monitoring large scale deep learning applications. 

Polyazon makes it faster, easier, and more efficient to develop deep learning applications by managing workloads with smart container and node management. It turns GPU servers into shared, self-service resources for individuals as well as enterprises. You can start your Polyaxon project here


Valohai focuses on models, code and data. It allows users to easily run the powerful cloud machines with a single click (UI) or a single command (CLI & API). It can be set up on any cloud vendor or on-premise to orchestrate machines automatically. Repository and experiments on Valohai are available on GitHub

Weights & Biases 

Weights & Biases is a ‘developer tool’ for machine learning. With this, users can build better models faster, alongside experiment tracking, dataset versioning, and model management. Check out all the machine learning experiments and repositories here

More Great AIM Stories

Amit Raja Naik
Amit Raja Naik is a seasoned technology journalist who covers everything from data science to machine learning and artificial intelligence for Analytics India Magazine, where he examines the trends, challenges, ideas, and transformations across the industry.

More Stories


8th April | In-person Conference | Hotel Radisson Blue, Bangalore

Organized by Analytics India Magazine

View Event >>

30th Apr | Virtual conference

Organized by Analytics India Magazine

View Event >>

Yugesh Verma
All you need to know about Graph Embeddings

Embeddings can be the subgroups of a group, similarly, in graph theory embedding of a graph can be considered as a representation of a graph on a surface, where points of that surface are made up of vertices and arcs are made up of edges

Yugesh Verma
A beginner’s guide to Spatio-Temporal graph neural networks

Spatio-temporal graphs are made of static structures and time-varying features, and such information in a graph requires a neural network that can deal with time-varying features of the graph. Neural networks which are developed to deal with time-varying features of the graph can be considered as Spatio-temporal graph neural networks. 

Vijaysinh Lendave
How to Evaluate Recommender Systems with RGRecSys?

A recommender system, sometimes known as a recommendation engine, is a type of information filtering system that attempts to forecast a user’s “rating” or “preference” for an item. In this post, we will look at RGRecSys, a library that performs constraint evaluation of recommender systems.

3 Ways to Join our Community

Discord Server

Stay Connected with a larger ecosystem of data science and ML Professionals

Telegram Channel

Discover special offers, top stories, upcoming events, and more.

Subscribe to our newsletter

Get the latest updates from AIM