MITB Banner

Facebook’s New AI Models Run 5x Faster On GPUs, Outperforms EfficientNet Models

Share

Illustration by Attendees sit in front of signage displayed during the Facebook F8 Developers Conference in San Francisco, California, U.S., on Tuesday, April 12, 2016. Facebook Inc. Chief Executive Officer Mark Zuckerberg outlined a 10-year plan to alter the way people interact with each other and the brands that keep advertising dollars rolling at the worlds largest social network. Photographer: Michael Short/Bloomberg via Getty Images

Researchers from Facebook AI recently introduced a new network design paradigm known as RegNet. RegNet – or Regular Networks – is a low-dimensional design space that consists of simple, regular networks. The researchers analyzed the RegNet design space and arrived at interesting findings, which are a unique match to the current practice of network design. 

Facebook AI Research (FAIR) is at the forefront of deep learning techniques. The social media giant has been focused on building products on several domains. This includes open-sourcing AI tools, Building Perception, Facial Recognition with DeepFace, and DeepText, among others. 

Visual recognition techniques such as ResNet, LeNet, and AlexNet have gained much traction over the past few years. It helps in the advancement of both effectiveness of neural networks, as well as in the understanding of network design, in case network instantiations and design principles can be generalized and applied to numerous settings.

Behind RegNet

To find simple models that are easy to understand, build upon, and generalize, the researchers presented a new network design paradigm that combines the advantages of manual design and Neural Architecture Search (NAS). Neural Architecture Search (NAS) overcomes the limitations of manual network design, and helps find a suitable model within a fixed search space of possible networks. 

Unlike manual design, this work took advantage of semi-automated procedures and focused on designing design spaces, which help in parametrizing the population of networks. The researchers referred to this process as a design space design.

Design space is a large – possibly infinite – population of model architectures. According to the researchers, the main motive behind this project is to help advance the understanding of network design and discover design principles that generalize across settings.

How RegNet Works

The core of the RegNet design space is composed of stage widths and depths, which are determined by a quantized linear function. The researchers designed the RegNet design space in a low-compute, low-epoch regime, using a single network block type on ImageNet dataset.

In each step of the design process, the input is an initial design space, and the output is a refined design space, where each design step aims to discover design principles that yield populations of simpler or better performing models.

The primary tool used by the researchers for analyzing design space quality is the error empirical distribution function (EDF). They used a relatively unconstrained design space to build RegNet, known as AnyNet, where the widths and depths vary freely across stages. 

The researchers said, “We propose to design network design spaces, where design space is a parametrized set of the possible model architecture, and we characterize the quality of a design space by sampling models and inspecting their error distribution.”

Contributions In This Project

Here are some of the contributions mentioned by the researchers of this project:-

  • According to the researchers, the RegNet design space has simpler models, is easier to interpret, and has a higher concentration of good models
  • An important property of the design space design in this project is that it is more interpretable, and can lead to interactive learning insights
  • The researchers compared the top REGNET models to existing networks in various settings. This showed that simple RegNet models achieve surprisingly good results.
  • REGNET models lead to considerable improvements over standard RESNE(X)T models in all metrics

Wrapping Up

According to the researchers, designing network design spaces is a promising avenue for future research. Under comparable training settings and flops, the RegNet models outperform the popular EfficientNet models, while being up to 5X faster on GPUs.

Read the paper here.

Share
Picture of Ambika Choudhury

Ambika Choudhury

A Technical Journalist who loves writing about Machine Learning and Artificial Intelligence. A lover of music, writing and learning something out of the box.
Related Posts

CORPORATE TRAINING PROGRAMS ON GENERATIVE AI

Generative AI Skilling for Enterprises

Our customized corporate training program on Generative AI provides a unique opportunity to empower, retain, and advance your talent.

Upcoming Large format Conference

May 30 and 31, 2024 | 📍 Bangalore, India

Download the easiest way to
stay informed

Subscribe to The Belamy: Our Weekly Newsletter

Biggest AI stories, delivered to your inbox every week.

AI Forum for India

Our Discord Community for AI Ecosystem, In collaboration with NVIDIA. 

Flagship Events

Rising 2024 | DE&I in Tech Summit

April 4 and 5, 2024 | 📍 Hilton Convention Center, Manyata Tech Park, Bangalore

MachineCon GCC Summit 2024

June 28 2024 | 📍Bangalore, India

MachineCon USA 2024

26 July 2024 | 583 Park Avenue, New York

Cypher India 2024

September 25-27, 2024 | 📍Bangalore, India

Cypher USA 2024

Nov 21-22 2024 | 📍Santa Clara Convention Center, California, USA

Data Engineering Summit 2024

May 30 and 31, 2024 | 📍 Bangalore, India

Subscribe to Our Newsletter

The Belamy, our weekly Newsletter is a rage. Just enter your email below.